دانلود پایان نامه ارشد : بررسی و تشخیص نفوذ با استفاده از الگوریتم های داده ­کاوی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی فناوری اطلاعات

عنوان : بررسی و تشخیص نفوذ با استفاده از الگوریتم های داده ­کاوی

وزارت علوم،  تحقیقات و فناوری

دانشگاه علوم  فنون مازندران

پایان نامه

مقطع کارشناسی ارشد

رشته مهندسی فناوری اطلاعات

عنوان :بررسی و تشخیص نفوذ با استفاده از الگوریتم های داده ­کاوی

استاد راهنما:دکتر حسین مومنی

استاد مشاور: دکتر جواد وحیدی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

با رشد فناوری اطلاعات، امنیت شبکه به عنوان یکی از مباحث مهم و چالش بسیار بزرگ مطرح است. سیستم های تشخیص نفوذ، مولفه اصلی یک شبکه امن است. سیستم های تشخیص نفوذ سنتی نمی­توانند خود را با حملات جدید تطبیق دهند از این رو  امروزه سیستم های تشخیص نفوذ مبتنی بر داده ­کاوی مطرح گردیده­اند. مشخص نمودن الگوهای در حجم زیاد داده، کمک بسیار بزرگی به ما می­کند. روش­های داده ­کاوی با مشخص نمودن یک برچسب دودویی (بسته نرمال، بسته غیر­نرمال) و همچنین مشخص نمودن ویژگی­ها و خصیصه با الگوریتم­های دسته­بندی می­توانند داده غیر­نرمال تشخیص دهند. از همین رو دقت و درستی سیستم­های تشخیص­نفوذ  افزایش یافته و در نتیجه امنیت شبکه بالا می­رود. در این پایان نامه ما مدلی پیشنهادی ارائه می­نماییم که الگوریتم­های مختلف دسته­بندی  را روی مجموعه داده خود تست نموده و نتایج  شبیه­سازی نشان می­دهد در درخت تصمیم  الگوریتم J48 ، شبکه عصبی الگوریتم Neural net ، شبکه بیزین  الگوریتم HNB ، مدل کاهل الگوریتم K-STAR، در ماشین بردار پشتیبان الگوریتم LibSVM و در مدل قانون محور الگوریتمRule Induction Single Attribute  دارای بهترین جواب از نظر پارامترهای مختلف ارزیابی برای سیستم تشخیص نفوذ است. بین تمامی الگوریتم­ها با این مجموعه داده، الگوریتم J48 دارای بالاترین مقدار درستی به میزان  85.49%،  دارای بالاترین میزان دقت به مقدار 86.57% و دارای بالاترین مقدار یادآوری به مقدار 86.57% می­باشد. نوآوری اصلی در پایان نامه ، استفاده از الگوریتم­های مدل کاهل و مدل قانون­محور است که تاکنون برای سیستم­های تشخیص­نفوذ استفاده نشده است. و همچنین پیشنهاد 5 نمونه داده که از داده اولیه استخراج شده که برای مدل­های مختلف و الگوریتم­ها بهترین جواب را می­دهد.

 

کلمات کلیدی: داده کاوی، کشف تقلب، یادگیری بانظارت، تشخیص­نفوذ و حملات

 

 

فهرست مطالب

فصل اول      1

1-1 مقدمه. 2

1-2 بیان مسئله. 3

1-3 اهمیت و ضرورت تحقیق.. 4

1-4 اهداف تحقیق.. 5

1-5 تعاریف و اختصار. 6

1-6 ساختار پایاننامه. 9

فصل دوم       10

2-1 داده ­کاوی.. 11

2-1-1دسته­بندی                                                                                                                                                   11

2-2مدلها و الگوریتمهای دادهکاوی.. 13

2-2-1 شبکه­های عصبی                                                                                                                            13

2-2-2درخت تصمیم                                                                                                                                       16

2-2-3 روش طبقه­بندی بیزین                                                                                                              19

2-3-2-2 شبکه­های بیزین                                                                                                                       20

2-2-4 مدل قانون­محور                                                                                                                                22

2-2-5 مدل کاهل                                                                                                                                                26

2-2-6ماشین بردارپشتیبان                                                                                                                      32

2-3 مقدمه­ای بر تقلب… 36

2-3-1 ساختن مدل برای تقلب                                                                                                            36

2-3-2 اصول کلی تقلب:                                                                                                                            36

2-3-3 چگونگی شناسایی تقلب:                                                                                                         37

2-3-4 چگونگی ساخت مدل تقلب:                                                                                                   37

2-4 مقدمه­ای بر سیستم تشخیص نفوذ. 38

2-4-1 تعاریف اولیه  39

2-4-2 وظایف عمومی یک سیستم تشخیص نفوذ:                                                           39

2-4-3 دلایل استفاده از سیستم های تشخیص نفوذ:                                                    40

2-4-4 جمع آوری اطلاعات                                                                                                                   41

2-4-5 تشخیص و تحلیل:                                                                                                                          41

2-4-6 تشخیص سوء استفاده:                                                                                                            41

2-4-7 تشخیص ناهنجاری:                                                                                                                     42

2-4-8 مقایسه بین تشخیص سوء استفاده و تشخیص ناهنجاری:                42

2-4-9 پیاده سازی سیستمهای تشخیص نفوذ:                                                                    42

2-5 تعاریف برخی مقادیر ارزیابی مورد استفاده در سیستم داده کاوی: 44

2-5-1Confusion matrix:                                                                                                                          46

2-5-2 درستی                                                                                                                                                       47

2-5-3 میزان خطا                                                                                                                                              47

2-5-4 حساسیت، میزان مثبت واقعی، یاد آوری                                                             47

2-5-5 ویژگی، میزان منفی واقعی                                                                                                 48

2-5-6 حساسیت:                                                                                                                                                48

2-5-7دقت                                                                                                                                                                  49

2-5-8 معیار F:                                                                                                                                                     49

2-6 پژوهشهای انجام شده در این زمینه: 50

2-6-1 پژوهش اول: کشف تقلب در سیستم­های مالی­با استفاده از داده ­کاوی… … 51

2-6-2 پژوهش دوم: کشف تقلب در کارت اعتباری با استفاده از شبکه عصبی و بیزین   53

2-6-3پژوهش سوم: شناسایی تقلب بیمه با استفاده از تکنیکهای داده ­کاوی…….. ……… 56

2-6-4 پژوهش چهارم: استفاده از الگوریتم ژنتیک برای تشخیص تست نفوذ. 62

2-6-5 پژوهش پنجم: شناسایی ترافیک غیرنرمال در شبکه با الگوریتم خوشه بندی   65

3-1 روش تحقیق.. 71

3-2 داده­های آموزشی و تست: 73

3-2-1 ویژگی­های داده­ها                                                       ………. 73

3-2-2 ویژگیهای اساسی مجموعه دادهها:                                                                               73

4-1 الگوریتمهای مدل بیزین و ارزیابی آنها 83

4-2 مدل کاهل.. 92

4-3 شبکه عصبی.. 99

4-4 مدل قانون محور. 108

4-5 درخت تصمیم. 118

4-6 ماشین بردار پشتیبان.. 130

فصل پنجم  139

5-1 مقدمه. 140

5-2 مزایا 141

5-3 پیشنهادات… 141

فصل  ششم   143

فهرست منابع. 144

پیوستها  148

پیوست الف -مجموعه داده نوع اول: 148

پیوست ب-مجموعه داده نوع دوم. 153

پیوست ج-نوع داده مجموعه سوم: 156

پیوست د-مجموعه داده نوع چهارم. 161

پیوست ه -مجموعه داده نوع پنجم. 190

 


 

 

فهرست جداول

 

جدول‏2‑1: تعریف معیارها 45

جدول‏2‑2: ماتریس Confusion. 46

جدول‏2‑3:معیارهای مختلف ارزیابی وفرمول آنها‎‎ 50

جدول‏2‑4: مقایسه نتیجه بین شبکه­عصبی وشبکه بیزین.. 56

جدول‏2‑5: داده برای دسته بندی بیزین‎‎ 59

جدول‏2‑6: داده برای دسته­بندی بیزین‎‎ 60

جدول‏2‑7: ارزیابی درخت تصمیم‎‎ 62

جدول‏2‑11: ارزیابی با استفاده ازخوشه­بندی.. 69

جدول‏3‑1 :ویژگی­های اساسی استخراج شده ازارتباطTCP. 74

جدول‏3‑2 :ویژگی های استخراجی ازارتباطTCP. 74

جدول‏3‑3: ویژگیهای استخراج شده ازپنجره. 76

جدول‏4‑2: ماتریس Confusion الگوریتم Kernel naive Baysian 83

جدول‏4‑1: معیارهای ارزیابی ونتایج الگوریتم Kernel naive Baysian 84

جدول‏4‑4: ماتریس Confusion  الگوریتم Naive Baysian. 84

جدول‏4‑3: معیارهای ارزیابی ونتایج الگوریتم Naive Baysian 84

جدول‏4‑6: ماتریس Confusion الگوریتم Waode. 85

جدول‏4‑5: معیارهای ارزیابی ونتایج الگوریتم Waode. 85

جدول‏4‑8: ماتریس Confusion الگوریتم Aode. 85

جدول‏4‑7: معیارهای ارزیابی و نتایج الگوریتم Aode. 86

جدول‏4‑10: ماتریسConfusion الگوریتم Aodesr 86

جدول‏4‑9: معیارهای ارزیابی ونتایج الگوریتم Aodesr 86

جدول‏4‑12: ماتریسConfusion الگوریتم Bayesenet 87

جدول‏4‑11: معیارهای ارزیابی ونتایج الگوریتم Bayesenet 87

جدول‏4‑13: معیارهای ارزیابی ونتایج الگوریتم HNB.. 88

جدول‏4‑14: ماتریسConfusion الگوریتم HNB 88

جدول‏4‑16: ماتریس Confusion الگوریتم Dmnbtext 88

جدول‏4‑15: معیارهای ارزیابی ونتایج الگوریتم Dmnbtext 89

جدول‏4‑18: ماتریسConfusion الگوریتم BaysianLogic Regression. 89

جدول‏4‑17: معیارهای ارزیابی ونتایج الگوریتم BaysianLogic Regression. 89

جدول‏4‑20: ماتریسConfusion الگوریتم  IB1. 93

جدول‏4‑19: معیارهای ارزیابی و نتایج الگوریتم IB1 93

جدول‏4‑21: معیارهای ارزیابی ونتایج الگوریتم IBK.. 93

جدول‏4‑22: ماتریس Confusion الگوریتم IBK.. 94

جدول‏4‑24: ماتریس Confusion الگوریتم LWL. 94

جدول‏4‑23: معیارهای ارزیابی ونتایج الگوریتم LWL. 94

جدول‏4‑26: ماتریسConfusion الگوریتم KSTAR.. 95

جدول‏4‑25: معیارهای ارزیابی ونتایج الگوریتم KSTAR.. 95

جدول‏4‑27: معیارهای ارزیابی ونتایج الگوریتم KNN.. 95

جدول‏4‑28: ماتریس Confusion الگوریتم KNN.. 96

جدول‏4‑29: معیارهای ارزیابی ونتایج شبکه MLP. 101

جدول‏4‑30: ماتریس  ConfusionشبکهMLP 101

جدول‏4‑32: ماتریس  Confusionشبکه Perceptrons. 102

جدول‏4‑31: معیارهای ارزیابی ونتایج شبکه Perceptrons 103

جدول‏4‑34: ماتریسConfusion  الگوریتم RBF. 104

جدول‏4‑33: معیارهای ارزیابی ونتایج الگوریتم RBF. 104

جدول‏4‑36:ماتریسConfusion  الگوریتم Neural net 105

جدول‏4‑35:معیارهای ارزیابی ونتایج الگوریتم Neural net 105

جدول‏4‑38: ماتریس Confusion الگوریتم Conjuctive rule. 108

جدول‏4‑37: معیارهای ارزیابی ونتایج الگوریتم Conjuctive rule. 108

جدول‏4‑39: معیارهای ارزیابی ونتایج الگوریتم decision table. 109

جدول‏4‑40: ماتریسConfusion  الگوریتم decision table. 109

جدول‏4‑41 :معیارهای ارزیابی ونتایج الگوریتم DTNB.. 110

جدول‏4‑42: ماتریسConfusion  الگوریتم DTNB.. 110

جدول‏4‑44: ماتریس Confusion الگوریتم JRIP. 110

جدول‏4‑43: معیارهای ارزیابی ونتایج الگوریتم JRIP. 111

جدول‏4‑45: معیارهای ارزیابی ونتایج الگوریتم ONER.. 111

جدول‏4‑46: ماتریس Confusion الگوریتم ONER.. 111

جدول‏4‑47: معیارهای ارزیابی ونتایج الگوریتم PRSIM.. 112

جدول‏4‑48: ماتریس Confusion الگوریتم PRSIM.. 112

جدول‏4‑49: معیارهای ارزیابی ونتایج الگوریتم RIDOR.. 112

جدول‏4‑50: ماتریسConfusion الگوریتم RIDOR.. 113

جدول‏4‑51: معیارهای ارزیابی ونتایج الگوریتم RULE Induction. 113

جدول‏4‑52: ماتریسConfusion الگوریتم RULE Induction. 113

جدول‏4‑53: معیارهای ارزیابی ونتایج الگوریتم RULE Induction single attribute. 114

جدول‏4‑54: ماتریسConfusion الگوریتم RULE Induction single attribute. 114

جدول‏4‑55: معیارهای ارزیابی ونتایج الگوریتم TREE by rule. 114

جدول‏4‑56:ماتریس Confusion الگوریتم TREE by rule. 115

جدول‏4‑57: معیارهای ارزیابی ونتایج الگوریتم part 115

جدول‏7‑58: ماتریسConfusion الگوریتم part 115

جدول‏4‑59: معیارهای ارزیابی ونتایج الگوریتم CHAID.. 119

جدول‏4‑60: ماتریسConfusion الگوریتم CHAID.. 119

جدول‏4‑61: معیارهای ارزیابی ونتایج الگوریتم DECISION TREE 119

جدول‏4‑62: ماتریس Confusion الگوریتم DECISION TREE. 120

جدول‏4‑63: معیارهای ارزیابی ونتایج الگوریتم J48. 120

جدول‏4‑64: ماتریسConfusion الگوریتم J48. 120

جدول‏4‑65: معیارهای ارزیابی ونتایج الگوریتم FT. 121

جدول‏4‑66: ماتریس  Confusion الگوریتم FT 121

جدول‏4‑68: ماتریس Confusion الگوریتم ID3. 121

جدول‏4‑67: معیارهای ارزیابی ونتایج الگوریتم ID3. 122

جدول‏4‑69: معیارهای ارزیابی ونتایج الگوریتم LAD.. 122

جدول‏4‑70: ماتریس Confusion الگوریتم LAD.. 122

جدول‏4‑71: معیارهای ارزیابی ونتایج الگوریتم ADT. 123

جدول‏4‑72: ماتریس Confusion الگوریتم ADT. 123

جدول‏4‑73: معیارهای ارزیابی ونتایج الگوریتم BF. 123

جدول‏4‑74: ماتریس Confusion الگوریتم BF. 123

جدول‏4‑75:معیارهای ارزیابی ونتایج الگوریتم LMT. 124

جدول‏4‑76:ماتریسConfusion الگوریتم LMT. 124

جدول‏4‑77: معیارهای ارزیابی ونتایج الگوریتم J48graft 124

جدول‏4‑78: ماتریس Confusion الگوریتم J48graft 125

جدول‏4‑79: معیارهای ارزیابی ونتایج الگوریتم NB 125

جدول‏4‑80:ماتریس Confusion الگوریتم NB.. 125

جدول‏4‑81:معیارهای ارزیابی ونتایج الگوریتم REEPTREE 126

جدول‏4‑82: ماتریس  Confusion الگوریتم REEPTREE. 126

جدول‏4‑83: معیارهای ارزیابی ونتایج الگوریتم Simplecart 126

جدول‏4‑84:ماتریس Confusion الگوریتم  Simplecart 127

جدول‏4‑85:معیارهای ارزیابی ونتایج روش Libsvm.. 130

جدول‏4‑86: ماتریسConfusion روش Libsvm.. 130

جدول‏4‑87: معیارهای ارزیابی ونتایج روش Support vector machine. 131

جدول‏4‑88: ماتریس   Confusion روش Support vector machine 131

جدول‏4‑89: معیارهای ارزیابی ونتایج روش Support vector machine(linear) 132

جدول‏4‑90: ماتریسConfusion روش Support vector machine(linear) 132

جدول‏4‑91: معیارهای ارزیابی ونتایج روش Speggeous. 132

جدول‏4‑92: ماتریسConfusion روش Speggeous. 133

جدول‏4‑93: معیارهای ارزیابی ونتایج روش W-svm.. 133

جدول‏4‑94: ماتریس  Confusion روش W-svm.. 133

جدول‏4‑95: معیارهای ارزیابی ونتایج روش Fast large. 134

جدول‏4‑96: ماتریس  Confusion روش Fast large. 134

فهرست اشکال و نمودارها

 

شکل‏2‑1: معماری یک نمونه سیستم داده ­کاوی‎‎ 12

شکل‏2‑2: Wx,yوزن یال بینXو Yاست. 15

شکل‏2‑3: درخت تصمیم گیری‎‎‎‎ 17

شکل‏2‑4: شبکه بیزین‎‎ 21

شکل‏2‑5: شبه کد الگوریتم توالی پوشش… 26

شکل‏2‑6: شبکه کد الگوریتم IB3. 29

شکل‏2‑7: شبکه کد مربوطذ به الگوریتمKDD 31

شکل‏2‑8: انواع سیستم های تشخیص تقلب… 38

شکل‏2‑9: معماری یک سیستم تشخیص نفوذ. 40

شکل‏2‑10: چارچوب کلی داده ­کاوی برای کشف تقلب‎‎ 52

شکل‏2‑11: مقایسه خروجی­هابااستفاده ازنمودارROC.. 55

شکل‏2‑12: الگوریتم استخراج شده ازدرخت تصمیم. 61

شکل‏2‑13: عملکرد الگوریتم ژنتیک‎ 63

شکل‏2‑14: قاعده استخراج شده ازالگورِیتم ژنتیک‎‎ 64

شکل‏2‑15: توابع مربوط به الگوریتم ژنتیک ومقداردهی آن­ها 64

شکل‏2‑16: معماری الگوریتم ژنتیک برای تست نفوذ‎‎ 65

شکل‏2‑17: خوشه بندی برایk=2‎‎‎. 67

شکل‏2‑18: شناسایی داده­غیر­نرمال‎‎ 68

شکل‏2‑19: ترکیب دسته­بندی وشناسایی غیر­نرمال.. 68

شکل‏3‑1: معماری پیشنهاد داده شده برای تشخیص نفوذ باروش مبتنی برداده ­کاوی.. 72

شکل‏3‑2: مدلسازی الگوریتم شبکه­عصبی با نرم­افزارRapidminer 78

شکل‏3‑3: مدلسازی الگوریتم مدل­بیزین با نرم­افزارRapidminer 78

شکل‏3‑4: مدلسازی الگوریتم درخت تصمیم با نرم­افزارRapidminer 79

شکل‏3‑5: مدلسازی الگوریتم مدل­قانون­محوربا نرم­افزارRapidminer 79

شکل‏3‑6: مدلسازی الگوریتم مدل بردارپشتیبان با نرم­افزارRapidminer 80

شکل‏3‑7: مدلسازی الگوریتم مدل کاهل بانرم افزارRapidminer 80

شکل‏3‑8: نمونه­ای ازخروجی نرم­افزار Rapidminerباپارامترهای مختلف ارزیابی.. 81

شکل‏4‑1: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر درستی.. 90

شکل‏4‑2: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر دقت… 90

شکل‏4‑3: نمودار ارزیابی الگوریتم­های مدل بیزین بر حسب پارامتر یادآوری.. 91

شکل‏4‑4: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر F. 91

شکل‏4‑5: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامترهای مختلف… 92

شکل‏4‑6: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر درستی.. 96

شکل‏4‑7: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر دقت… 97

شکل‏4‑8: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر یادآوری.. 97

شکل‏4‑9: نمودار م ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر F. 98

شکل‏4‑10: نمودار مربوط به ارزیابی الگوریتم­های مدل کاهل برحسب پارامترهای مختلف… 98

شکل‏4‑11: نمونه ای ازشبکهMLP. 100

شکل‏4‑12: عملکرد شبکه پرسپتون.. 102

شکل‏4‑13: نمونه ای ازشبکهRBF. 103

شکل‏4‑14:نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر درستی.. 105

شکل‏4‑15: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر دقت… 106

شکل‏4‑16: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر یادآوری.. 106

شکل‏4‑17: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر F. 107

شکل‏4‑18: نموداره ارزیابی مدل­های شبکه عصبی برحسب پارامتر مختلف… 107

شکل‏4‑19:نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر درستی.. 116

شکل‏4‑20: نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر دقت… 116

شکل‏4‑21: نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر یادآوری.. 117

شکل‏4‑22: نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر F. 117

شکل‏4‑23: نمودار ارزیابی الگوریتم­های مدل قانون محور برحسب پارامتر مختلف… 118

شکل‏4‑24:نمودار ارزیابی الگوریتم­های مدل درخت برحسب پارامتر درستی.. 127

شکل‏4‑25: نمودار ارزیابی الگوریتم­های مدل درخت برحسب پارامتر دقت… 128

شکل‏4‑26: نمودار ارزیابی الگوریتم­های مدل درخت برحسب پارامتر یادآوری.. 128

شکل‏4‑27: نمودار ارزیابی الگوریتم­های مدل درخت برحسب پارامتر F. 129

شکل‏4‑28: نمودار ارزیابی الگوریتم­های مدل درخت برحسب پارامتر مختلف… 129

شکل‏4‑29: نمودار ارزیابی روش­های مختلف ماشین بردارپشتیبان برحسب پارامتر درستی   135

شکل‏4‑30: نمودار ارزیابی روش­های مختلف ماشین بردارپشتیبان برحسب پارامتر یادآوری   135

شکل‏4‑31: نمودار ارزیابی روش­های مختلف ماشین بردارپشتیبان برحسب پارامتر F. 136

شکل‏4‑32: نمودار ارزیابی روش­های­ مختلف ماشین بردارپشتیبان برحسب پارامتر دقت… 136

شکل‏4‑33: نمودار ارزیابی روش­های مختلف ماشین بردارپشتیبان برحسب پارامتر مختلف   137

شکل 4-34: نمودار مربوط به مقایسه بین همه الگوریتم­ها بر حسب پارامترهای مختلف       137

مقدمه

از آنجایی که از نظر تکنیکی  ایجاد سیستم­های کامپیوتری بدون نقاط ضعف و شکست امنیتی عملا غیر ممکن است. تشخیص نفوذ در سیستم­های کامپیوتری با اهمیت خاصی دنبال می­شود. سیستم­های تشخیص نفوذ سخت­افزار  یا نرم­افزاری است که کار نظارت بر شبکه ­کامپیوتری را در مورد فعالیت­های مخرب و یا نقص سیاست­های مدیریتی و امنیتی را انجام می­دهد و گزارش­های حاصله را به بخش مدیریت شبکه ارائه می­دهد‎[1]. سیستم­های تشخیص نفوذ وظیف شناسایی و تشخیص هر گونه استفاده غیر مجاز به سیستم، سوء استفاده و یا آسیب رسانی توسط هر دودسته کاربران داخلی و خارجی را بر عهده دارند. هدف این سیستم­ها جلوگیری از حمله نیست و تنها کشف و احتمالا شناسایی حملات و تشخیص اشکالات امنیتی در سیستم یا شبکه­کامپیوتری و اعلام آن به مدیر سیستم است. عموما سیستم­های تشخیص نفوذ  در کنار دیوارهای آتش  و بصورت مکمل امنیتی برای آن­ها مورد استفاده قرار می­گیرد. سیستم های تشخیص نفوذ ستنی نمی­توانند خود را با حملات جدید تطبیق دهند  از این رو  امروزه سیستم های تشخیص نفوذ مبتنی بر داده ­کاوی مطرح گردیده­اند‎[1]. مشخص نمودن الگوهای در حجم زیاد داده، کمک بسیار بزرگی به ما می­کند. روش­های داده ­کاوی با مشخص نمودن یک برچسب دودویی (بسته نرمال، بسته غیر­نرمال) و همچنین مشخص نمودن ویژگی­ها و خصیصه با الگوریتم­های دسته بندی می­توانند داده غیر­نرمال تشخیص دهند. از همین رو دقت و درستی سیستم های تشخیص نفوذ  افزایش یافته و در نتیجه امنیت شبکه بالا می­رود‎[1].

 

در این پایان نامه سعی شده است با استفاده از روش­های مبتنی بر داده ­کاوی سیتم های تشخیص نفوذ پیشنهاد کنیم که از این روش­ها برای شناسایی و کشف حملات استفاده می­کنند. در این روش ما تمامی الگوریتم­های موجود را شبیه­سازی نموده و در خاتمه بهترین الگوریتم را پیشنهاد می­نماییم. نوآوری اصلی در این پایان نامه ، استفاده از الگوریتم­های مدل کاهل و مدل قانون­محور در داده ­کاوی است که تاکنون برای سیستم­های تشخیص­نفوذ استفاده نشده است. همچنین استفاده از تمام الگوریتم­های موجود در روش­های دسته­بندی است که در نرم افزار WEKA و Rapidminer موجود است[67]. پیشنهاد 5 نمونه داده که از داده اولیه استخراج شده و برای مدل­های مختلف و الگوریتم­ها بهترین جواب را می­دهد از نوآوری این پایان نامه است. استخراج 5 نمونه داده وقت بسیار زیادی به خود اختصاص داده وهمه الگوریتم­های مختلف موجود در مدل­های دسته­بندی با مجموعه داده­های مختلف شبیه­سازی و اجرا شدند که در نهایت 5 نمونه داده اولیه پیشنهاد نموده­ایم.

1-2 بیان مسئله

در دنیای امروز، کامپیوتر و شبکه­های کامپیوتری متصل به اینترنت نقش عمده­ای در ارتباطات و انتقال اطلاعات ایفا می­کند. در این بین افراد سودجو با دسترسی به اطلاعات مهم مراکز خاص یا اطلاعات افراد دیگر و با قصد اعمال نفوذ یا اعمال فشار و یا حتی به هم ریختن نظم سیستم­ها، به سیستم ­های کامپیوتری حمله می­کنند. بنابراین لزوم حفظ امنیت اطلاعاتی و حفظ کارآیی در شبکه­های کامپیوتری که با دنیای خارج ارتباط دارند، کاملا محسوس است.

مکانیزم‌های امنیتی به 2 گروه کلی محافظتی و مقابله‌ای تقسیم‌بندی می‌شوند. مکانیزم‌های محافظتی سعی می‌کنند از اطلاعات و سیستم در مقابل حملات محافظت کنند. مکانیزم‌های مقابله‌ای هم برای مقابله با حمله تدارک دیده شده‌اند.‎[1] سیستم‌های تشخیص نفوذ مطابق تعریف مؤسسه ملی استانداردها و تکنولوژی‌های آمریکا، فرایندی هستند که کار نظارت بر رویدادهایی که در شبکه و سیستم رخ می‌دهد و همچنین کار تحلیل رویدادهای مشکوک را برای به‌دست آوردن نشانه نفوذ، بر عهده دارند.

تعداد صفحه : 164

قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09199970560        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

شماره کارت :  6037997263131360 بانک ملی به نام محمد علی رودسرابی

11

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید