دانلود پایان نامه ارشد : کاربرد شبکه های عصبی مصنوعی برای تشخیص مدل چاه های افقی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته شیمی

گرایش : مهندسی گاز

عنوان :  کاربرد شبکه های عصبی مصنوعی برای تشخیص مدل چاه های افقی

دانشکده مهندسی شیمی، نفت و گاز

پایان نامه کارشناسی ارشد در رشته مهندسی شیمی (گرایش مهندسی گاز)

کاربرد شبکه های عصبی مصنوعی برای تشخیص مدل چاه های افقی در مخازن نفتی با استفاده از داده های چاه آزمایی

استاد راهنما:

دکتر رضا اسلاملوئیان

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

در سالهای اخیر، چاه­های افقی زیادی در اطراف جهان حفر شده­است. دلیل عمده­ی آن توانایی افزایش سطح مخزن در تماس با چاه است که باعث افزایش بهره بری از چاه می­شود. از چاه­آزمایی برای شناخت مدل­های مخازن هیدروکربوری و تشخیص پارامترهای مربوط به آن­ها استفاده می­شود. چاه­آزمایی بر مبنای ایجاد اختلال در جریان و ثبت فشار ته چاه ناشی از آن رفتار می­کند. این تکنیک داده­های مورد نیاز برای آنالیز عددی پارامترهای مخزن را فراهم می­کند. روش چاه آزمایی شامل دو مرحله می­شود: 1) طبقه­بندی مدل مخزن 2) تخمین پارامترها. شناسایی مدل­های چاه افقی و تعیین پارامترهای مدل­های آنها در مقایسه با چاه عمودی بسیار پیچیده تر می­باشد. تعیین مدل‌ مخزن از نمودارهای مشتق فشار، یکی از مراحل مهم و پایه‌ای در تخمین پارامترهای مخزن از طریق آنالیز داده‌های چاه‌آزمائی می‌باشد. در این مطالعه از شبکه‌های عصبی مصنوعی، برای شناسائی مدل مخازن نفتی از طریق نمودارهای مشتق فشار استفاده شده‌است. شبکه‌های عصبی مصنوعی، مدل‌های ریاضی هستند که دارای توانایی منحصر به فرد در تخمین پارامتر و شناسایی الگو و … هستند. هشت مدل مختلف چاه افقی از مخازن نفتی  که مخازن همگن و تخلخل دو‌گانه با مرز‌های مختلف را شامل می‌شود، مورد بررسی قرار گرفته است. شبکه‌ی عصبی پیشرو توسط داده‌های مشتق فشاری که به‌وسیله‌ی شبیه‌سازی با نرم‌افزار PANSYSTEM تولید شده‌اند، آموزش داده‌ شده‌ است. عملکرد شبکه­ی پرسپترون به­ وسیله­ی متوسط خطاهای نسبی و مجذور میانگین مربعات خطا بررسی می­شود. توانایی شبکه‌ی طراحی‌شده از طریق داده‌های دارای نویز مورد بررسی قرار گرفته‌است. دقت شبکه‌ به‌وسیله‌ی تعدادی پارامتر آماری مانند حساسیت و دقت دسته‌بندی کلی آورده شده و دقت کلی شبکه‌ی پیشرو 05/97 می‌باشند.

کلمات کلیدی: چاه افقی ، شبکه عصبی مصنوعی ، شناسایی مدل مخزن­، چاه ­آزمایی

فهرست مطالب

عنوان      صفحه

1- مقدمه. 2

1-1- مقدمه‌ای بر مهندسی مخزن. 2

1-2- مخازن نفت و بهره­برداری از مخازن نفتی.. 3

1-3- تعاریف انواع مخزن­ها با استفاده از نمودارهای فازی.. 5

1-4- مروری بر خواص سنگ مخزن. 8

1-4-1- درجه تخلخل.. 8

1-4-2-تراکم­ پذیری هم­دما. 8

1-4-3- درجه اشباع سنگ… 9

1-5- مقدمه‌ای بر چاه‌آزمائی.. 9

1-5-1- عوامل موثر بر چاه‌آزمائی.. 12

1-5-1-1-  ضریب پوسته. 12

– ضریب پوسته‌ی شکاف هیدرولیکی.. 12

– تکمیل چاه جزئی و مشبک‌کاری جزئی.. 12

1-5-1-2- اثر ذخیره درون چاهی.. 14

– قانون سرانگشتی.. 15

1-5-1-3-  نفوذپذیری یا تراوائی.. 15

1-5-1-4- نحوه‌ی حرکت سیال درون محیط متخلخل.. 15

1-5-1-5- مرزهای مخزن.. 16

– مرز داخلی.. 16

– مرز بیرونی مخزن.. 16

1-5-2- انواع آزمایشات چاه‌آزمائی.. 17

1-5-2-1- آزمون­های دوره‌ای تولید (اندازه‌گیری روزانه‌ی دبی و فشار). 17

1-5-2-2- آزمون­‌های سنجش بهره‌دهی چاه. 18

1-5-2-2-1- برای مخازن نفتی.. 18

1-5-2-2-2- برای مخازن گازی.. 19

– آزمون­ شاخص بهره دهی تولید.. 19

– آزمون­ عملکرد جریان به داخل چاه. 19

– تغییرات دبی در زمان طولانی تولید.. 19

– تغییرات دبی در زمان کوتاه تولید.. 19

– تغییرات دبی در زمان کوتاه تولید و بستن چاه. 20

1-5-2-3- آزمون­های فشار گذرا ( فشار با زمان). 20

1-5-2-3-1- آزمایش‌ خیزش فشار. 21

– آزمایش خیزش فشار ایده‌آل.. 22

آزمایش خیزش فشار واقعی.. 23

انحراف از حالت ایده‌آل.. 24

روشهای تفسیر آزمایش خیزش فشار. 24

1-5-2-3-2- آزمایش جریانی.. 26

مشکلات چاه‌آزمائی جریانی.. 28

1-5-3- کاربرد نمودارهای مشتق در تحلیل آزمایشات چاه‌آزمائی.. 29

1-5-3-1- مثال‌هایی از کاربرد منحنی‌های مشتق فشار. 29

1-6- انواع چاه در مخازن. 32

1-6-1- چاه های عمودی.. 32

1-6-2-چاه­ها با شکست هیدرولیکی.. 32

1-6-3- چاه افقی.. 33

1-6-3-1- دوره­ی جریان شعاعی قائم. 34

1-6-3-2- دوره­ی جریان خطی میانی.. 35

1-6-3-3- دوره­ی جریان شبه شعاعی انتهایی.. 35

1-6-4 – معادلات زمان رژیم­های مختلف در چاه افقی.. 36

1-6-4 – آنالیز فشار در چاه افقی.. 37

1-7-1- آزمایش کاهش فشار. 37

پاسخ فشار در دوره­ی جریان شعاعی قائم اولیه. 37

پاسخ فشار در دوره­ی جریان خطی میانی.. 37

پاسخ فشار در دوره­ی جریان شبه شعاعی انتهایی.. 37

1-7-1- آزمایش خیزش فشار. 38

پاسخ فشار در دوره­ی جریان شعاعی قائم اولیه. 38

پاسخ فشار در دوره­ی جریان خطی میانی.. 38

پاسخ فشار در دوره­ی جریان شبه شعاعی انتهایی.. 38

1-8- شبکه های عصبی.. 38

1-8-1- ساختار مغز. 39

1-8-2- مدل ریاضی یک نرون. 40

1-8-3-یادگیری شبکه. 42

الف)  یادگیری با ناظر. 42

ب)  یادگیری بدون ناظر. 42

ج) یادگیری تشدیدی.. 42

1-8-4- تقسیم بندی بر اساس ساختار. 42

الف) شبکه های پیش خور. 42

ب) شبکه های بازگشتی.. 43

1-8-5- شبکه پرسپترون. 43

1-8-6- ترتیب ارائه داده ها به شبکه. 44

1-8-7- تابع انتقال. 44

1-8-8- پایان آموزش… 45

1-8-9- تعداد نرون در لایه ها 46

1-8-10- معیار‌های نیکویی برازش… 46

تحلیل رگرسیون.. 46

ضریب همبستگی.. 46

مجذور میانگین مربعات خطا. 47

متوسط خطاهای نسبی.. 47

2- مروری بر کارهای گذشته. 49

2-1- کارهای انجام شده بر روی شبکه­های عصبی.. 49

2-2- کارهای انجام شده بر روی چاه­های افقی.. 59

3- گردآوری داده های چاه آزمایی.. 66

3-1- مقدمه. 66

3-2- پارامترهای مورد نیاز برای وارد کردن به نرم افزار 67

3-3-پارامترهای چاه‌آزمائی مدل‌های مخزنی.. 68

3-3- 1-استفاده از روش طراحی آزمایش برای تولید داده های اولیه. 69

3-3-2- تبدیل داده های فشار به شبه فشار و مشتق گیری از آنها 70

3-4-نرمالیزه‌کردن. 71

3-5- ساختار شبکه­ی عصبی.. 71

3-6- مدل­های در نظر گرفته شده 73

– مخزن همگن فشار ثابت، بدون جریان و بدون مرز محدود. 73

– مخزن همگن فشار ثابت، بدون جریان با مرز گسل منفرد فشار ثابت… 74

– مخزن همگن فشار ثابت، بدون جریان با گسل منفرد بدون جریان.. 75

– مخزن تخلخل دوگانه فشار ثابت، بدون جریان و بدون مرز محدود. 75

– مخزن تخلخل دوگانه فشار ثابت، بدون جریان با مرز گسل منفرد فشار ثابت… 77

– مخزن تخلخل دوگانه فشار ثابت، بدون جریان با مرز گسل منفرد بدون جریان.. 78

– مخزن تخلخل دوگانه بدون جریان با مرزگسل منفرد فشار ثابت… 79

– مخزن تخلخل دوگانه ، بدون جریان با مرز گسل منفرد بدون جریان.. 79

4- بحث و نتایج. 82

4-1- مقدمه. 82

4-2- تعیین ساختار بهینه‌ی شبکه‌ پیشرو 82

4-2-1- آموزش شبکه…. 85

4-3- بحث و نتایج. 87

     4-3-1- امتحان شبکه با داده های تست.. 87

   4-3-2- بررسی استقامت شبکه در برابر نمودار‌های دارای نویز. 89

5- نتیجه‌گیری و پیشنهادات.. 99

5-1- مقدمه. 99

5-2- نتایج. 99

– نتایج مرتبط با شبیه‌سازی داده به‌وسیله نرم‌افزار. 99

– نتایج مرتبط با شبکه عصبی مصنوعی.. 99

5-3-2- پیشنهادات.. 100

منابع. 101

  • مقدمه­ای بر مهندسی مخزن

نفت خام­، گاز طبیعی و آب موادی هستند که برای مهندسان نفت دارای اهمیت ویژه­ای هستند­. این مواد که در دما و فشار پایین گاهی به صورت جامد یا نیمه جامد­­ (مانند پارافین­، هیدرات­های گازی­، یخ و نفت خام با نقطه ریزش بالا) یافت می­شوند­­، در اعماق زمین ودر ستون چاه به حالت سیال­، به صورت فاز بخار (گاز) یا مایع یا عمدتا دو فازی ظاهر می­شوند­. مواد جامدی که در عملیات حفاری­، سیمان­کاری و ایجاد شکاف به­کار برده می­شوند نیز به حالت سیال یا دوغاب استفاده می­شوند­. تقسیم­بندی سیالات مخزن و چاه به فازهای مایع و بخار­، به دما و فشار وابسته است­. وقتی دما ثابت است­، حالت یا فاز سیال درون مخزن با فشار تغییر می­کند­. در بسیاری از موارد­، حالت یا فاز سیال درون مخزن با حالت یا فاز سیال در هنگام تولید در شرایط سطح مطابقت ندارد­. شناخت دقیق رفتار نفت خام­، گاز طبیعی و آب – به صورت تکی یا ترکیبی- تحت شرایط مختلف از مهمترین اهداف مهندسان نفت است­. 

اوایل سال 1928­، توجه خاصی به روابط گاز و انرژی شد­ و مهندسان نفت در مورد شرایط فیزیکی چاه­ها و مخازن زیر­زمینی­، دست­یابی به اطلاعات دقیق­تر را لازم دانستند­. پیشرفت­های اولیه در مورد روش­های بازیافت نفت این موضوع را آشکار ساخت که محاسبات انجام شده بر اساس اطلاعات سر چاه یا داده­های سطح­،اغلب گمراه­کننده هستند­. اسکلاتر و استفانسون[1] اولین دستگاه ثبت فشار  درون چاهی و نمونه­گیر را برای نمونه­گیری از سیالات تحت فشار درون چاه­ها ابداع کردند[1]. جالب اینکه این دستگاه داده­های درون چاهی را باتوجه به مقادیر مثبت فشار، دما، نسبت­های گاز به نفت و طبیعت فیزیکی و شیمیایی سیالات مشخص می­کند­. لزوم اندازه­گیری فشارهای صحیح درون چاهی هنگامی مورد توجه قرار گرفت که اولین دستگاه فشار سنج دقیق توسط میلیکان و سیدول[2] ساخته شد و اهمیت اساسی فشارهای درون چاهی در تعیین مؤثرترین روش­های بازیافت و فرایند­های فرازآوری، به مهندسان نفت نشان داده شد[2]­. به این ترتیب مهندس مخزن قادر خواهد بود فشار مخزن که مهمترین داده­ی پایه ای مورد نیاز محاسبات عملکرد مخزن است­، اندازه­گیری کند­.

دانش پتروفیزیک­، مطالعه­ی خواص سنگ­ها و ارتباط با سیالات موجود در آن­ها در هر دو حالت استاتیک و جریانی می­باشد­. تخلخل­، تراوایی­، درجه اشباع و توزیع سیالات­، ضریب هدایت الکتریکی سنگ و سیال­، ساختار منافذ و رادیواکتیویته­، برخی از مهم­ترین خواص پتروفیزیکی هستند­. پیشگامان علم مهندسی مخزن از همان ابتدا به این نکته پی برده بودند که قبل از محاسبه­ی حجم­های نفت و گاز درجا­، آگاهی از تغییر خواص فیزیکی نمونه­های ته چاهی سیالات مخزن­، نسبت به فشار، ضروری است­.

طی دهه­ی 1960­، عبارات شبیه سازی و مدل­سازی ریاضی مخزن عمومیت یافت[3]­­. این عبارت مترادف هستند و به توانایی استفاده از معادلات ریاضی جهت پیش بینی عملکرد مخزن نفت یا گاز اشاره دارند­. پیدایش رایانه­های دیجیتالی پرسرعت در مقیاس وسیع­، باعث تقویت علم شبیه سازی مخازن گردید­. روش­های عددی پیچیده نیز با استفاده از شیوه­های اختلاف محدود یا المان محدود­، جهت حل تعداد زیادی از معادلات گسترش یافت­.

با توسعه این روش­ها­، مفاهیم و معادلات مهندسی مخزن به صورت شاخه­ای قوی تعریف شده از مهندسی نفت در آمد­. مهندسی مخزن عبارت است از کاربرد اصول علمی جهت حل مسائل تخلیه که ضمن توسعه و بهره­برداری مخازن نفت و گاز بروز می­نماید­. مهندسی مخزن (هنر توسعه و بهره­برداری سیالات نفت وگاز به طریقی که بازیابی اقتصادی بالا حاصل شود) نیز تعریف شده است[4]­.

  • ­مخازن نفت و بهره­برداری از مخازن نفتی

توده­های نفت و گاز داخل تله­های زیر­زمینی یافت می­شود که به واسطه­ی خصوصیات ساختاری و چینه­ای شکل گرفته­اند[5]­. خوشبختانه توده­های نفت و گاز معمولا در قسمت­های متخلخل­تر و نفوذپذیرتر بسترها که به صورت عمده ماسه­ها­، سنگ­های ماسه­ای­، سنگ­های آهکی و دولومیت­ها هستند­ و نیز در منافع بین دانه­ای یا فضای منافذ که با درزها­، شکاف­ها و فعالیت محلول ایجاد شده­­اند یافت می­شوند­.    

در شرایط اولیه­ی مخزن­، سیالات هیدروکربنی به حالت تک فاز یا دو فاز می­باشند­.حالت تک فاز ممکن است فاز مایع باشدکه تمام گاز موجود در نفت حل شده است­. در این حالت­، ذخایر گاز طبیعی محلول باید همانند ذخایر نفت خام برآورد شوند­. از طرف دیگر­، حالت تک فاز ممکن است فاز گاز باشد­. اگر در فاز گاز­، هیدروکربن­های تبخیرشده­ای وجود داشته باشند که در سطح زمین به صورت مایعات گاز طبیعی قابل بازیابی باشند­، این مخزن را مخزن گاز میعانی یا مخزن گاز تقطیری می­نامند­. در این حالت­، ذخایر مایعات همراه موجود ( میعانی یا تقطیری ) باید همانند ذخایر گاز برآورد شوند­­­. زمانی که توده­ی هیدروکربنی به صورت دوفاز باشد­­، فاز بخار را کلاهک گازی می­نامند­ و فاز مایعی که در زیر آن واقع می­شود­­، منطقه­ی نفتی نام دارد­. در این­جا چهار نوع ذخایر هیدروکربوری وجود خواهد داشت­:

گاز آزاد یا گاز همراه­، گاز محلول­، نفت موجود در منطقه­ی نفتی و مایعات گاز طبیعی که از کلاهک گازی بازیابی می­شوند­.

هرچند هیدروکربن­های موجود در مخزنکه به آن ذخیره می­گویند­، مقادیر ثابتی دارند، میزان ذخایر به روش بهره برداری از مخزن بستگی دارد­. در سال 1986 جامعه­ی مهندسان نفت (SPE)[3] تعریف زیر را برای ذخایر انتخاب کرد­:

ذخایر­، میزان حجم­های برآورد شده­ی نفت خام­، گاز طبیعی­، مایعات گاز طبیعی و مواد همراه قابل عرضه در بازار هستند که از یک زمان به بعد تحت شرایط اقتصادی موجود­، با عملیات بهره­برداری مشخص و تحت آیین­نامه­های جاری دولت به لحاظ اقتصادی­، قابلیت بازیابی و سوددهی وعرضه در بازار را داشته باشند[6]. میزان ذخایر با استفاده از داده­های زمین­شناسی و مهندسی موجود محاسبه می­گردد­. به تدریج که طی بهره­برداری از مخزن داده­های بیشتری به­دست می­آید­، برآورد ذخایر نیز روزآمد می­شود­.

تولید اولیه­ی هیدرو کربن­ها از مخازن زیر زمینی که با استفاده از انرژی طبیعی مخزن صورت می­گیرد­­، بهره­برداری اولیه محسوب می­شود­. در بهره­برداری اولیه، نفت یا گاز بر اثر الف) انبساط­، ب) جابه­جایی سیال­، ج) ریزش ثقلی و د) نیروی مویینه دافعی به سمت چاه­های تولیدی رانده می­شوند­. در صورتی که مخزن فاقد سفره­ی آبی باشد و سیالی به آن تزریق نشود­، بازیابی سیالات هیدروکربنی عمدتا با انبساط سیال صورت می­گیرد­. در حال که در مورد نفت ­، ممکن است بازیابی به کمک ساز­و­کار ریزش ثقلی انجام شود­. در صورتی که شار آب ورودی از سفره­ی آبی وجود داشته باشد یا به جای آن آب به درون چاه­های انتخابی تزریق شود­، بازیابی با ساز­و­کار جابه­جایی صورت می­گیرد که ممکن است همرا با ساز­و­کار ریزش ثقلی یا نیروی مویینه­ی دافعی باشد­­. گاز نیز که سیال جابه­جا کننده است­، به منظور کمک به بازیابی نفت به چاه­ها تزریق می­شود­. همچنین از گاز به منظور بازیابی سیالات گاز میعانی در چرخه­ی گاز استفاده می­شود­.

استفاده از طرح تزریق گاز طبیعی یا آب­، عملیات بازیابی ثانویه نامیده می­شود­. زمانی که برنامه­ی تزریق آب فرایند بازیابی ثانویه را به دنبال داشته باشد­، فرایند سیلاب زنی آبی نامیده می­شود­. هدف اصلی از گاز طبیعی یا آب­ به مخزن­، حفظ فشار است­. به همین دلیل از عبارت برنامه­ی حفظ فشار نیز در تشریح فرآیند بازیابی ثانویه استفاده می­شود­.

فرایند جابه­جایی دیگری فرایند بازیابی مرحله­ی سوم نامیده می شود­، در مواقعی که فرایند­های بازیافت ثانویه کارایی ندارد­،کاربرد می­یابد­. همچنین این فرایند­ها در مخازنی به کار می­روند که از روش­های بازیابی ثانویه به دلیل پتانسیل پایین بازیابی استفاده نمی­شود­. در این حالت کلمه­ی مرحله­ی سوم نام­گذاری غلطی است­. در برخی از مخازن­، اعمال فرایند ثانویه یا مرحله­ی سوم پیش از فرایند پایان بازیابی مرحله­ی اول سودمند است­. در این مخازن عبارت ازدیاد برداشت به کار می­رود و عموماً شامل هر فرایند بازیابی  می­شود که برداشت از مخازن را بیش از آن­چه از انرژی طبیعی مخزن انتظار می­رود، بهبود بخشد­.

  • تعاریف انواع مخزن­ها با استفاده از نمودار­های فازی

از نقطه نظر فنی­، می­توان انواع مختلف مخزن را به کمک موقعیت اولیه­ی دما و فشار مخزن با توجه به محدوده­ی دو فازی ( گاز و مایع) که معمولاً بر روی نمودار حالات فشار –­ دما نشان داده­ می­شود­، تعریف کرد­­. شکل (1-1) نمودار فازی فشار –­ دما می باشد که در آن هر دو فاز گاز و مایع وجود دارند­­. ناحیه­ی سمت چپ نمودار به پایین که با منحنی­های نقاط حباب و شبنم محصور می­باشد­، محدوده­ای است مرکب از دما و فشارهایی که در آن هر دو فاز وجود خواهند داشت­. منحنی­های درون ناحیه­ی دوفازی­، در صدی از حجم کل هیدروکربن را به صورت مایع می­باشد­، به ازای مقادیر مختلف فشار و دما نشان می دهند­. در ابتدا هر توده­ی هیدروکربنی­، نمودار حالت مخصوص خود را خواهد داشت­ که فقط به ترکیب آن توده بستگی دارد­.

تعداد صفحه :112

قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09361998026        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

شماره کارت :  6037997263131360 بانک ملی به نام محمد علی رودسرابی

11

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید