پایان نامه ارشد: استفاده از ساقه‌ گیاه خاکشیر در حذف آلایندگی رنگی از محیط‌های آبی و بررسی تأثیر عملکرد جاذب در مقیاس نانو بر حذف

متن کامل پایان نامه مقطع کارشناسی ارشد رشته : مهندسی شیمی

عنوان : استفاده از ساقه‌ گیاه خاکشیر در حذف آلایندگی رنگی از محیط‌های آبی و بررسی تأثیر عملکرد جاذب در مقیاس نانو بر حذف

دانشگاه سمنان

دانشکده مهندسی شیمی، نفت و گاز

پایان‌نامه کارشناسی ارشد مهندسی شیمی

عنوان:

استفاده از ساقه‌ی گیاه خاکشیر در حذف آلایندگی رنگی از محیط‌های آبی و بررسی تأثیر عملکرد جاذب در مقیاس نانو بر حذف

استادان راهنما:

 دکتر مهدی پروینی

 دکتر سید حسن زوار موسوی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول: مقدمه و تئوری تحقیق………………………………….. 1

1-1 مقدمه……………………………………………………………. 1

1-2  انواع جذب………………………………………………………. 3

1-3 طبیعت جاذب‌ها…………………………………………………. 4

1-4  جاذب‌ها…………………………………………………………. 4

1-5 عوامل تأثیرگذار بر روی قدرت جذب یک جاذب……………….. 5

1-5-1 سطح تماس………………………………………………….. 5

1-5-2 غلظت………………………………………………………… 7

1-5-3 دما…………………………………………………………….. 7

1-5-4 نوع ماده جذب شده و جاذب……………………………….. 7

1-5-5 حالت ماده جذب شده و جاذب…………………………….. 7

1-6 ذغال‌های رنگ بر………………………………………………… 7

1-7  کربن فعال………………………………………………………. 8

1-8  روش‌های فعالسازی………………………………………….. 9

1-8-1 روش فعالسازی فیزیکی…………………………………….. 9

1-8-2 روش فعالسازی شیمیایی………………………………… 10

1-9  تئوری رنگ‌ها و جذب رنگ………………………………….. 12

1-10   اساس کار دستگاه اسپکتروسکوپ‏……………………… 13

1-10-1 اسپکتروفتومتر نور مرئی…………………………………. 13

1-10-2 اجزاء دستگاه……………………………………………… ‏ 13

1-10-3 طرز تعیین غلظت یک ماده توسط اسپکتروفتومتر………15

1-11   رنگ‌ها و خواص آن‌ها……………………………………… 16

1-11-1 رنگ‌های اسیدی یا آنیونی……………………………… 16

1-11-2 رنگ‌های بازی یا کاتیونی………………………………. 16

1-11-3 رنگ‌های خنثی………………………………………….. 17

1-12   ایزوترم‌های جذب…………………………………………. 18

1-12-1 ایزوترم فرندلیچ…………………………………………… 18

1-12-2 مدل‌ایزوترم لانگمیر……………………………………… 19

1-12-3 مدل‌ایزوترم BET………………………………………….

1-12-4 مدل‌ایزوترم دوبین-رادوشکویچ…………………………. 21

1-12-5 ایزوترم تمکین……………………………………………. 22

1-12-6 مدل‌ایزوترم توس………………………………………… 22

1-12-7 مدل‌ایزوترم سیپز………………………………………… 22

1-12-7 رادکه-پراودنیتز…………………………………………….23

1-13   تخمین پارامترهای‌ایزوترم جذب با استفاده از خطی‌سازی…23

1-14   تصـفیـه آب………………………………………………. 24

1-15   جذب سطحی…………………………………………. 24

1-16   کاربرد‌های فرآیند جذب سطحی در صنعت تصفیه آب….26

1-17   اهداف تحقیق…………………………………………… 27

فصل دوم: مروری بر سوابق مطالعاتی و پژوهشی…………. 29

2-1  مروری بر تحقیقات انجام شده در حذف آلاینده، بخصوص رنگ‌ها از محیط‌های آبی….29

2-2 انواع جاذب‌ها……………………………………………….. 30

2-2-1   استفاده از جاذب‌های سنتزی………………………… 30

2-2-2   استفاده از جاذب‌های طبیعی………………………… 31

2-3  حذف رنگ‌های کاتیونی و آنیونی………………………… 32

2-4  روش‌های تبدیل مواد به جاذب کربنی…………………… 34

2-5 نانوبیوکامپوزیت سلولز باکتریایی/سیلیکا جایگزین سلولزهای گیاهی….38

2-6 استفاده از جاذب‌های گیاهی و ارزان قیمت به جای جاذب‌های گران……39

فصل سوم: مواد و روش‌ها……………………………………… 41

3-1 جاذب به کار رفته برای جذب در‌این تحقیق………………. 41

3-2 ترکیبات شیمیایی………………………………………….. 42

3-3 فرمول شیمیایی آلاینده‌ی رنگی به کار رفته…………….. 42

3-4 شکل مولکولی……………………………………………… 43

3-5  نانو فیبر سلولز…………………………………………….. 43

3-6 شرایط آزمایشگاه……………………………………………. 45

3-7 تجهیزات و دستگاه‌ها……………………………………….. 46

3-8  مواد لازم…………………………………………………….. 46

3-9 روش آماده‌سازی جاذب…………………………………….. 48

3-9-1   تهیه‌ی جاذب و مش بندی آن………………………….. 48

3-9-2 تهیه جاذب خاکشیر در ابعاد نانو با استفاده از آسیاب فوق ریز کننده‌ی دیسکی….48

3-10   تهیه‌ی محلول رنگ به عنوان پساب رنگی……………. 49

3-11   مراحل بهینه‌کردن جذب…………………………………. 50

3-12   بررسی‌های جاذب به کار رفته…………………………. 50

3-13-1 شکل شناسی ذرات(ریخت شناسی) ………………50

3-13-2 بررسی گونه‌های موجود در ساختار با استفاده از آزمون FTIR………

3-13-3 روش جداسازی رنگ بریلیانت‌گرین………………….. 51

3-13-4 روش تعیین غلظت رنگ در محیط آبی………………. 52

3-13   روش محاسبه‌ی میزان حذف…………………………. 53

3-14بررسی و تعیین‌ایزوترم یا‌ایزوترم‌های جذبی حاکم بر فرآیند جذب…..54

3-15   بررسی سنتیک جذب………………………………… 54

3-16-1 مدل سنتیک شبه درجه اول………………………… 54

3-16-2 مدل سنتیک شبه درجه دوم……………………….. 55

3-16-3 مدل سنتیک نفوذ درون ذره‌ای……………………… 56

3-16-4 مدل سنتیک بنگهام…………………………………. 56

فصل چهارم: نتایج آزمایشگاهی…………………………….. 57

4-1 بهینه‌کردن جاذب………………………………………….. 57

4-1-1   انتخاب pH بهینه……………………………………… 57

4-1-2 زمان تماس…………………………………………….. 59

4-1-3   مقدار گرم جاذب(دُز جاذب) …………………………..60

4-1-4 غلظت اولیه‌ی محلول………………………………….. 62

4-1-5 بررسی دما……………………………………………. 63

4-1-6  دور همزن……………………………………………… 64

4-1-7 اسیدی‌کردن جاذب……………………………………. 65

4-1-8   تأثیر اندازه جاذب بر میزان حذف……………………. 66

4-2 ایزوترم‌های حاکم بر فرآیند جذب……………………….. 67

4-2-1 مدل فرندلیچ……………………………………………. 67

4-2-2 مدل‌ایزوترم لانگمیر……………………………………..68

4-2-3   ایزوترم تمکین………………………………………… 70

4-2-4 نانوژل و جداسازی آن از محیط آبی پس از فرآیند حذف…..71

4-3  شکل‌‌شناسی (شکل‌شناسی یا ریخت‌شناسی جاذب)….72

4-4  آزمایش FTIR برای بررسی گونه‌های موجود در ساختمان شیمیایی جاذب…..78

4-5 تخمین پارامتر‌های ترمودینامیکی……………………….. 82

4-5-1 مدل سنتیک شبه درجه اول…………………………… 82

4-5-2   مدل سنتیک شبه درجه دوم………………………… 82

4-5-3   مدل نفوذ درون ذره‌ای………………………………… 83

4-5-4   مدل بنگهام……………………………………………. 84

4-6 مقایسه جداسازی رنگ بریلیانت‌گرین از محلول آبی با استفاده از جاذب‌های مشابه با شرایط یکسان….86

4-7 بررسی مقاومت‌های انتقال جرم………………………… 87

فصل پنجم: نتیجه‌‌گیری و پیشنهادات………………………… 90

5-1 نتیجه‌گیری………………………………………………….. 90

5-2 پیشنهادت………………………………………………….. 92

مراجع…………………………………………………………….. 93

پیوست 1. فهرست اسامی‌لاتین…………………………….. 100

پیوست 2. کالیبراسیون دستگاه اسپکتروفوتومتر………….. 103

پیوست 3. شبیه سازی جذب………………………………… 104

پیوست 4. گرمای جذب و تغییرات انرژی آزاد گیبس و تغییرات آنتروپی……105

فصل اول: مقدمه و تئوری تحقیق

1-1- مقدمه

در چند سال اخیر، توسعه‌ی پایدار و توجه به نسل‌اینده، باعث شده‌است تا محققان بر روی روش‌هایی کار کنند که به کمک آن‌ها تخریب‌های زیست محیطی را کاهش داده و گسترش آلودگی‌ها کمتر شود، اما هرچه صنایع گسترده‌تر و بزرگتر می‌شوند، آلودگی‌های ناشی از فعالیت آن‌ها محیط‌‌زیست را بیشتر تهدید می‌کند.

رنگ‌ها یک دسته مهم از آلاینده‌ها می‌باشند که می‌تو‌اند توسط چشم انسان تشخیص داده‌شوند. هرچند که ادر منابع آب با ارزش باید اجتناب شود، با‌این حال، برای حل‌این مشکل فن آوری‌های مختلف و فرآیندهای مختلفی به کار برده می‌شوند. با‌این حال در میان روش‌های مختلفی که برای حذف رنگ وجود دارد، جذب سطحی جایگاه برجسته ای به خود گرفته‌است. تقاضا برای روش‌های کارآمد و کم هزینه برای جذب در حال رشد است و اهمیت جاذب‌های ارزان قیمت[1] برای جایگزینی با جاذب‌های گران را افزایش داده‌است[1].

 بررسی‌های جامع بر ادبیات کارهای گذشته نشان می‌دهد که جاذب‌های ارزان قیمت علاوه بر‌اینکه در دسترس باید باشند، بایستی ظرفیت جذب بالایی را نیز از خود نشان‌دهند. در کارهای گذشته بر شرایط بهینه‌ی جذب و نوع ماده‌ی جذب شده و شرایط محیط‌های مناسب برای جذب و قابلیت تبدیل شدن جاذب مورد نظر به کربن فعال، مورد بحث و بررسی قرار گرفته‌است[1].

انتشار آلودگی‌های رنگی به داخل آب‌های سطحی و زیر زمینی نیز مشکلات عمده ای بوجود آورده‌است. صنایع نساجی، مسئول رهاسازی رنگ‌های گوناگون به داخل منابع طبیعی آب‌ها هستند، دلیل آن را می‌توان در نبود بازدهی کافی در تکنیک‌های رنگ رزی دانست. بیش از 15% رنگ‌ها ممکن است موقع استفاده از رنگ‌های واکنشی مستقیما وارد آب شوند[2].

در عملیات جذب سطحی انتقال یک جزء از فاز گاز یا مایع به سطح جامد صورت می‌گیرد. از کاربرد‌های‌این فرایند می‌توان به رنگبری شربت قند و تصفیه روغن‌های صنعتی یا خوراکی و حذف مواد آلاینده از هوا یا مخلوط گازهای دیگر اشاره کرد. شکل 1-1. نمودار خوشه ای تقسیم بندی کلی مواد آلاینده را نشان می‌دهد.

واژه جذب سطحی برای تشریح‌این حقیقت بکار می‌رود که غلظت مولکول‌های جذب شده در سطح تماس جامد بیشتر از فاز گاز یا محلول است. جذب روی یک سطح جامد به علت نیروی جاذبه اتم‌ها یا مولکول‌ها در سطح آن جامد است. در عمل جذب سطحی نیروهای مختلفی اعم از فیزیکی و شیمیایی مؤثرند و مقدار آن بستگی به طبیعت ماده جذب شده و جسم جاذب دارد و به‌این دلیل می‌توان مثلا ماده ای را که در یک مخلوط وجود دارد جدا نمود[3, 4].

چند مثال که در ادامه بیان شده‌، نمایانگر طبیعت عمومی‌جداسازی‌ها خواهد بود و کاربرد‌های اصلی آن را نشان می‌دهد. در حالت جداسازی‌های گازی از فرایند جذب، در رطوبت زدائی‌ها هوای خشک و دیگر گازها، بوزدائی و جداسازی ناخالصی‌ها از گازهای صنعتی مثل دی اکسید کربن، بازیابی حلال‌های پر ارزش از محلول رقیق آن‌ها با هوا یا گاز‌های دیگر، و جداسازی مخلوطی از هیدرو کربن‌های گازی مانند مخلوطی از متان، اتیلن، اتان، پروپیلن و پروپان استفاده می‌شود[5].

 از فرایند‌های جداسازی مایع می‌توان رطوبت زدائی بنزین، رنگ زدائی محصولات نفتی و محلول‌های آبکی قندی، بوزدائی و طعم زدائی آب، و جداسازی هیدرو کربن‌های آروماتیکی و پارافینی، را نام برد که هر کدام از‌این موارد در صنعت کاربرد وسیعی داشته و بنا به مورد و شرایط محدوده کاری از آن استفاده می‌شود. علاوه بر موارد ذکر شده، جذب رنگ در صنایع مختلفی جزو فرآیند‌های مطلوب بوده‌که کارهایی نیز در جهت افزایش انتقال رنگ از فاز محلول به سلولز انجام شده، از جمله‌ی کاربرد‌های‌این فرآیند در تولید کاغذهای رنگی و صنایع نساجی می‌توان اشاره کرد[6].

این عملیات‌ها همه از‌این جهت مشابه هستند که در آن‌ها مخلوطی که باید تفکیک شود با یک فاز نامحلول دیگر تماس حاصل می‌نماید (مانند جذب جامد) و پخش نامساوی مواد اولیه بین فاز جذب شده روی سطح جامد و توده سیال موجب جداسازی می‌شود[7].

2-1- انواع جذب

دو مکانیزم اصلی برای جذب سطحی وجود دارد[5]:

1) جذب فیزیکی یا واندوالس

2) جذب شیمیایی

در جذب فیزیکی به دلیل نیروهای جاذبه‌ی بین مولکولی جامد و ماده‌ی جذب شده یک پدیده‌ی برگشت پذیر رخ می‌دهد.‌این حالت تراکم با تولید حرارت همراه است که کمی‌بیش از حرارت نهان تبخیر و در حدود حرارت تصعید گاز می‌باشد. ماده‌ی جذب شده در کریستال و شبکه‌ی کریستالی جامد نفوذ نمی‌کند. و در آن حل نمی‌شود، بلکه در سطح باقی می‌ماند. در حالت کلی، در تعادل، فشار جزئی ماده جذب شده برابر با فشار فاز گاز تماس یافته با آن است و باکاهش فشار فاز گازی یا با افزایش دما، گاز جذب شده به راحتی دفع و از سطح بدون تغییر شکل جدا می‌شود. برگشت پذیری در‌این نوع عملیات جذب در صنعت بسیار مهم است، زیرا بازیابی جاذب‌های ساخته شده به دلیل صرفه جویی اقتصادی بسیار حائز اهمیت است، نمونه ای از‌این فرآیند‌ها را می‌توان فرآیند PSA دانست که در آن بایستی جاذب را برای مصرف مجدد بازیابی کرد.

جذب شیمیایی؛‌این نوع جذب، نتیجه‌ی فعل و انفعالات شیمیایی جامد و ماده جذب شده‌است. نیروهای چسبندگی معمولاً بیشتر از آن چیزی است که در جذب فیزیکی وجود دارد. حرارت آزاد شده در عمل جذب شیمیایی معمولاً زیاد و در حدود یک واکنش شیمیایی است، برای یک ماده ممکن است که جذب فیزیکی و در دمای زیاد‌، جذب شیمیایی مشاهده شود. جذب شیمیایی در کاتالیزورها مهم است.

3-1- طبیعت جاذب ها

جاذب‌ها بایستی خواص مهندسی شده‌ی خود را داشته باشند که از جمله‌ی‌این خواص، می‌توان به موارد زیر اشاره کرد:

– نباید اختلاف فشار زیادی‌ایجاد کنند

– نباید به همراه مواد از بستر خارج شوند

– مقاومت سختی خوبی داشته باشند

– بخواهیم در ظروف نگهداری و خارج کنیم، براحتی جریان پیدا کنند.

4-1- جاذب ها

جامدی که بر روی سطح آن جذب اتفاق می‌افتد جاذب[1] می‌نامند. ماده‌ی جذب شده را مجذوب[2] می‌نامند. جذب سطحی بر روی سطح مشترک جامد مایع به وقوع می‌پیوندد[8].

جامد‌های جاذب معمولا به شکل گرانول (ذرات کروی شکل با قطر چند میلیمتر) مصرف می‌شوند و اندازه آن‌ها از 12 میلیمتر قطر تا 50 میکرومتر متغیر است[5, 9]. به تازگی استفاده از نانو تکنولوژی سبب گردیده که حتی ابعاد نانو نیز به تسخیر روش‌ها و فناوری‌های کاربردی برای جذب در آمده و استفاده از آن رونق یابد. از جمله‌ی‌این دسته از جاذب‌ها می‌توان به نانو پلیمرهای زیستی و سطوح با ابعاد نانوساختار اشاره کرد.

همان طور که اشاره شد، جامد‌ها باید بر اساس کاربرد و موقعیت مصرف دارای بعضی خواص مهندسی باشند. برای مثال اگر از آن‌ها در یک بستر ثابت با جریان گاز یا مایع استفاده می‌شود، نباید اختلاف فشار زیادی‌ایجاد کنند و همچنین نباید توسط جریان سیال به خارج حمل شوند. آن‌ها باید از مقاومت و سختی خوبی برخوردار باشند تا در اثر حمل و نقل و همچنین در اثر وزن خود در بستر خرد نشوند. در صورتی که بخواهیم آن‌ها را از ظروف نگهداری به داخل و خارج انتقال دهیم، باید به راحتی جریان پیدا کنند.‌این‌ها خواصی هستند که به راحتی شناخته می‌شوند[5, 10].

خاصیت جذب جامد‌ها یک مسأله دیگر است. جذب یک پدیده عمومی‌است و تمام جامد‌ها، مقداری از گاز‌ها و بخارات را جذب می‌کنند. ولی در اهداف صنعتی تنها بعضی جامدات ظرفیت جذب لازم را دارند. پس جامداتی که دارای خاصیت جذب بسیار ویژه ای هستند و به مقدرا زیاد جذب انجام می‌دهند، طبیعت شیمیایی آن‌ها با خواص جذب رابطه دارد. ولی صرف شناسایی شیمیایی، برای مفید بودن آن کافی نیست. برای مثال استخراج، تمام نمونه‌های خالص بوتیل استات که اسید استیک را از آب استخراج می‌نمایند دارای قدرت یکسان هستند.‌این حالت برای خواص جذبی سیلیکاژل نسبت به بخار آب صادق نیست.‌این خواص جذبی بیشتر بستگی به روش ساخت ماده و دسترسی و سطح تماس جذب‌شونده و جاذب و سابقه جذب و دفع مواد روی آن دارد.

برخی از فرآیندهای جذب همراه با واکنش شیمیایی است، به طوری که به دلیل واکنش، جذب سریع‌تر اتفاق می‌افتد و خود به خودی می‌باشد، از‌این نوع جذب‌ها می‌توان به جذب رنگ دی آزو بر روی بنتونیت اشاره کرد[11]. در‌این گونه فرآیندها گرمای جذب به محیط داده‌شده و حتی خود جاذب دمایش افزایش پیدا کرده و فرآیند جذب را تحت تأثیر قرار می‌دهد. بسیاری از جامدات‌این خاصیت را دارند که بتوانند مقداری گاز یا ماده حل شده در حلالی را، جذب نمایند.

[1] Adsorbent

[2] Adsorbate

[1]LCAS

تعداد صفحه : 125

قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09309714541 (فقط پیامک)        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید