پایان نامه ارشد: بررسی نظری معادله حالت مخلوط دوتایی کروی سخت ایزوتوپ های هیدروژن

متن کامل پایان نامه مقطع کارشناسی ارشد رشته : فیزیک هسته ای

عنوان : بررسی نظری معادله حالت مخلوط دوتایی کروی سخت ایزوتوپ های هیدروژن

دانشگاه مازندران

دانشکده علوم پایه

پایان نامه دوره کارشناسی ارشد در رشته فیزیک هسته­ای

موضوع:

بررسی نظری معادله حالت مخلوط دوتایی کروی سخت ایزوتوپ های هیدروژن

استاد راهنما:

دکتر محمدرضا پهلوانی

استاد مشاور:

دکتر سید محمد متولی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود(در فایل دانلودی نام نویسنده موجود است)تکه هایی از متن پایان نامه به عنوان نمونه :(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)فهرست مطالب:مقدمه..................................1فصل اول- مبانی همجوشی هسته ­ای................................. 51-2-همجوشی مغناطیسی................................. 15-2-2-1 مراحل همجوشی به روش محصورسازی اینرسی............. 23-3-2-1وضعیت.................................. 30-3-1 شیوههای توصیف پلاسما............................... 31-1-3-1توصیف پلاسما به صورت مایع................................ 33-2-3-1 معادلۀ حالت در تصویر شیمیای................................. 33فصل دوم- نظریه اختلال................................. 36-1-2نظریه اختلال مکانیک آماری................................. 36-2-2 مبنای مکانیک آماری تابع توزیع شعاعی............................. 42-3-2نظریه های تابع توزیع شعاعی (RDF) ...............................46-4-2 آمارهای کوانتمی از مجموعه های تقریباً کلاسیک.................47-1-4-2 تبدیل مجموع حالات.................................. 49-5-2 معادله حالت برای مخلوط مایع افزایشی............................ 551-5-2 - شرایط توافق مربوط به مقادیر نقطه تماس تابع توزیع شعاعی برای یک مخلوط دوتایی کروی سخت..........56-2-5-2 بیان تحلیلی برای مقادیر تماس تابع توزیع مربوط به مخلوط مایع کروی سخت..........60-3-5-2 بهبود تابع توزیع تماس و معادله حالت با استفاده از شرایط توافق.................62فصل سوم- کاربرد معادله حالت و روشهای محاسباتی............................653-1- معادله حالت  (EOS) ...............................653-2-انرژی آزاد هلمولتز مخلوط................................. 693-3-پتانسیل برای سیستم برهمکنشی ................................... 733-4-تابع توزیعHS................................3-4-1-شعاع مؤثر  کروی  سخت.................................. 793-5-محاسبات عددی................................. 813-6-نتایج................................. 86فصل چهارم-بحث و نتیجه گیری................................. 100چکیده:نظریه اختلال مکانیک آماری انتخاب مناسبی برای محاسبه معادله حالت مخلوط دوتایی در گستره وسیعی از دما و چگالی می­باشد. اجزاء تشکیل دهنده مخلوط توسط پتانسیل دو جمله­ای شامل دافعه کوتاه برد و جاذبه بلند برد  exp-6 باکینگهام باهم برهمکنش می­کنند. از آنجاییکه  دوتریوم و تریتیوم عناصری سبک می­باشند، اثر کوانتمی توسط تصحیح مرتبه اول در قالب بسط ویگنر-کریکوود اعمال می­شود. در این پژوهش از تابع توزیع شعاعی استفاده نمودیم که در دما و چگالی بالا نتایج قابل قبولی می­دهد. علاوه بر این ما تأثیر مقادیر مختلف چگالی­، دما  و کسر مولی تریتیوم را بر روی خواص مخلوط  بر پایه نظریه اختلال مکانیک آماری مورد مطالعه قرار داده­ایم. در انتها، معادله حالت  مخلوط در بازه وسیعی از چگالی و دما پیشبینی شده است.مقدمه: مسئله انحلال پذیری متقابل به عنوان تابعی از نسبت اجزای سازنده[1]، دما و فشار در یک مخلوط برای طراحی دستگاهی جهت جداسازی یا ترکیب(تشکیل) یک فاز همگن بسیار مفید می­باشد.  همچنین شرایط با دما و فشار بسیار زیاد شرایط لازم برای تحقیق در مورد انفجارهای چگال را فراهم می­آورد. محصورسازی اینرسی با تراکم سوخت تا چگالی زیاد و زمان محصورسازی بسیار کوتاه روشی متفاوت را برای دستیابی به همجوشی هسته­ای ایجاد می کند. در این روش با استفاده از تابش باریکه های لیزری پرقدرت و یا ذرات باردار پرانرژی که از شتابدهنده ها تولید می شوند، مواد همجوشی کننده را بهم نزدیک کرده و احتمال همجوشی را افزایش می دهند. برای این منظور ساچمه[2] های بسیار کوچک (به قطر 1.0 تا چند میلیمتر) که حاوی سوخت همجوشی با چگالی حجمی هیدروژن مایع در حدود4.5  1022 cm-3   و چگالی جرمی حدود 0.2 g .cm-3 ]1[ هستند، از جهات مختلف و بطور متقارن و همزمان تحت تابش پرتوهای لیزر با انرژی بالا و یا پالس شدیدی از ذرات شتابدار پر انرژی قرار می گیرند. در دما و فشار خیلی زیاد، اندازه­گیری مستقیم به علت شرایط نامطلوب آزمایشگاهی امکان پذیر نمی­باشد، از این رو، یک رهیافت تئوری، در صورتیکه اثرات دما (T) و فشار(P) بوضوح در فرمالیزم وارد شود، بر اساس تئوری مخلوط بسیار مورد سودمند است.  برای تحت شوک قرار دادن مخلوط مورد نظر باید معادله حالت مخلوط معلوم باشد. لذا ما در این کار تحقیقاتی معادلۀ حالت مخلوط مایع   در دمای پائین و فشار نسبتا بالا  را مورد بررسی قرار داده­ایم. سیستم مخلوط   به علت اهمیت زیاد از دیدگاه تئوری مورد توجه قرار گرفته است [4-2]. اجزاء سازنده­ای از این نوع بعنوان موادی که در دما و فشار زیاد خصوصیات مشخصی را بروز دهند شناخته شده­اند، زیرا در فشارهای زیاد این مخلوط جداشدگی فازی مایع-مایع را بروز می­دهد. هر دو  دارای برهمکنش­های­ جاذبه و دافعه پیچیده­ای هستند [5]. از این رو نیروهای بین مولکولهای متفاوت در مخلوط نقش قابل توجهی [7و6] در شکل گیری  خصوصیات آنها ایفا می کند. همچنین به علت جرم پایین این دو ذره تاثیرات کوانتمی را در دماهای پائین با اهمیت می­گردد.ما در این کار تحقیقاتی نظریه اختلال مکانیک آماری [8] را بر روی یک مخلوط دوتایی کروی سخت[3]با تصحیحات لازم برای نیروهای جاذبه و اثرات کوانتمی مورد مطالعه قرار داده­ایم.  شعاع پوسته سخت وابسته به دما است، از این رو، حلالیت مخلوط   را  در بازه وسیعی از دما و فشار می­توان بدست آورد. پتانسیلهای با دافعه ملایم مانند باکینگهام exp-6 حقیقی­تر از پتانسیلهای یوکاوا یا چاه مربعی می­باشد و خواص ترمودینامیکی دقیقی را ارائه می­دهد [8]. از اینرو برای رسم نمودار فاز مخلوط دوتایی مولکولهای کروی سخت از  پتانسیل باکینگهام استفاده کرده­ایم [9]. همچنین برای بررسی اثر کوانتمی، تصحیح مرتبه اول بسط ویگنر-کریکوود[4]  [11و10] را اعمال خواهیم کرد. با احتساب بخش­های مختلف انرژی آزاد هلمهولتز، ما قادر به ارائه نسخه پیشرفته­تری از معادله حالت برای مطالعه عامل تراکم (Z) و دیگر پارامترهای ترمودینامیکی خواهیم بود. از این فرضیات برای تحقیق اثرات  فشار و دما  (T , P) روی خواص ترمودینامیکی مخلوط   در بازه وسیعی از چگالی و نحوه ترکیب اجزای سازنده آن استفاده خواهیم نمود. علارغم ساختار ساده الکترونی هیدروژن و ایزوتوپهای آن، توصیف دقیقی از خصوصیاتشان در چگالیهای بالا تحت تراکم شوک و معادله حالت آنها در مخلوط در دست نیست  اما به کمک بعضی مدلهای تقریبی وبا استغاده از تئوری اختلال و وردشی با تصحیح کوانتمی و پتانسیلexp-6  باکینگ هام برای استفاده در معادله شوک هیوگونیت برای مخلوط فوق استفاده نموده­ایم.  چن[5] در سالهای 1999و2006 میلادی با استفاده از روش وردشی معادله حالت مخلوط  رابدست آورد و با نتایج تجربی چگالی مایع بدست آمده توسط شبیه سازی و آزمایشات نیلز در1980 مقایسه نمود ونشان داد که تئوری مورد استفاده با نتایج تجربی تطبیق خوبی دارد. در چند سال گذشته پیشرفت های چشم گیری به صورت تئوری و عملی در معادله حالت هیوگونیت دوتریم مایع وهلیم  توسط ابلینگ و بولو[6]  در1991 میلادی و انجام گرفت. علی[7] در 2004 میلادی  بر روی مخلوط   با استفاده از روش اختلال مطالعاتی انجام داده و در مقایسه با نتایج تجربی در محدوده خاص این روش را تائید نمود. اما روش های تئوریکی هنوز کاملا قادر به توصیف این عناصر ساده در چگالی های بالا نمی­باشند. ما نیز با استفاده از روش های فوق  به بررسی معادله حالت مخلوط دو ذره  ،   می­پردازیم. لذا ابتدا در فصل یک اصول و مبانی همجوشی هسته­ای را شرح داده و ارتباط مطالعۀ انجام شده را با همجوشی بیان می­کنیم. سپس در فصل دوم به شرح اصولی که نظریه مورد استفادۀ ما بر آن استوار است می­پردازیم. در فصل سوم نحوه استفاده از این نظریه در مخلوط مورد نظر را ارائه خواهیم نمود. و در نهایت نتایج خود را با نتایج نظریات دیگر و شبیه سازی  مقایسه کرده و پارامترهای ترمودینامیکی دیگر مربوط به مخلوط دوتریوم و تریتیوم را محاسبه می­کنیم.فصل اول: مبانی همجوشی هسته ایتولید انرژی به همان روشی که در خورشید انجام می­گیرد برای مدت های طولانی رؤیای بشر بوده است. از اوایل قرن بیستم، دانشمندان دریافتند که منبع انرژی خورشید-همانند دیگر ستارگان- فرآیندی موسوم به همجوشی هسته­ای می­باشد. تا سال 1950 هنوز فعالیتهای تحقیقاتی مقدماتی در  این زمینه شروع نشده بود. اما امروزه کشورهای زیادی از تحقیق در ارتباط با همجوشی در جستجوی منبعی برای تولید انرژی پشتیبانی می­کنند. انجام چنین تحقیقاتی بطور فزاینده­ای مهم است، زیرا مسئلۀ بحران انرژی روز به روز به موضوعی مهمتر بدل می­شود. امروزه استفاده از همجوشی بعنوان یکی از راه حل­های بحران انرژی مطرح است. بخصوص به این دلیل که مزیت های عدم آلودگی محیط زیست را در مقایسه با سوزاندن زغالسنگ و نفت یا رأکتورهای شکافت هسته­ای را داراست.  همجوشی از این جهت که سوخت همجوشی قابل استخراج از آب دریاست، بسیار جذاب است، به طوریکه برای بیشتر کشورهای در جهان بطور مستقیم قابل دسترسی می­باشد.اگرچه پیشرفت های چشمگیری در علم همجوشی و تکنولوژی صورت گرفته، تا کنون هیچ رآکتور همجوشی در حال کار نیست. به عنوان اولین گام جهت درک همجوشی به روش محصورسازی لختی، ما به این سؤال که چگونه خورشید انرژی تولید می­کند رجوع خواهیم نمود. کلید واکنشهای همجوشی هسته­ای و آزادسازی انرژی، در تعبیرات انرژی بستگی نهفته است. انیشتین نشان داد که جرم و انرژی توسط رابطه زیر با هم ارتباط دارند.بنابراین ما با جرم هسته ها شروع می­کنیم. مطابق با درک کنونی ما، جرم یک هسته در یک دیدگاه نیم کلاسیکی توسط فرمول نیمه تجربی زیر توصیف می­گردد.که  و  به ترتیب جرم پروتون و نوترون و  ،  ،  ،  و  ثوابتی هستند که توسط برون­یابی با انرژی­های بستگی تجربی بدست می­آیند،  جملۀ ذوجیت است. بنابراین انرژی بستگی   (در واحد  ) هسته­ اختلاف جرم اجزاء تشکیل دهنده هسته زمانیکه بسیار از یکدیگر دورند، بصورت زیر می­باشد.   شکل (1-1) انرژی بستگی متوسط تجربی را به بصورت تابعی از  نشان می­دهد. این تابع یک بسشینه تخت را در ناحیه­ای برای هسته هایی نزدیک آهن نشان می­دهد، که از پایدارترین هسته ها است. برای هسته های بسیار سبکتر یا سنگینتر از آهن، انرژی بستگی متوسط به طور قابل ملاحظه­ای کوچکتر است. این اختلاف در میزان انرژی بستگی پایه فرآیند همجوشی و شکافت هسته­ای است. اساس همجوشی هسته­ای این است که دو هسته خیلی سبک باهم ترکیب شده و از ترکیب آنها یک هسته با انرژی بستگی بیشتر تشکیل شود (جرم کمتر). بنابراین انرژی مطابق فرمول انیشتین (1-1) آزاد می­شود. همچنین هنگامی که یک هسته سنگین به دو پاره شکافته می­شود، دو هسته با مجموع جرم کمتر از جرم هسته اولیه تولید می­شود که به آزاد شدن انرژی می­انجامد.     فرآیندهای همجوشی زیادی بین عناصر سبک امکانپذیر است. هرچند مسئله در شروع چنین واکنش­هایی این است که هسته­های سبک بار مثبت دارند و با شدت زیادی یکدیگر را دفع می­کنند. بنابراین تحت شرایط عادی فاصله بین هسته­ها برای انجام همجوشی بسیار زیاد است، که در این شرایط برهمکنش هسته­ای تقریبا غیرممکن است. اما علی­رغم این مشکل چگونه این پدیده به تولید چنین انرژی قدرتمندی در خورشید می­انجامد؟ در پاسخ به این سؤال می­توان گفت که به علت دما  (106K) و فشار بالا در مرکز خورشید، و وجود تعداد زیادی ذره، همچنین زمان به اندازه کافی طولانی، سطح مقطع برخورد برای چنین برهم­کنشی به اندازه کافی بزرگ است که تولید انرژی مشخصه خورشید را نسبتاً ثابت نگه دارد. در خورشید انرژی در اصل از یک چرخه برهمکنش پروتون-پروتون  بدست می­آید.[1] Components[2] Pellet[3] Hard sphere[4] Wigner-Kirkwood[5] Q. F. Chen[6] Beulle, Ebling[7] I. Ali, S. M. Osmanتعداد صفحه : 110قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09309714541 (فقط پیامک)        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید