پایان نامه ارشد تجارت الکترونیک: تدوین شاخصها و داشبورد ارزیابی و پیشبینی پیشرفت تحصیلی دانشجویان با شبکه عصبی و درخت تصمیم C5

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته فناوری اطلاعات

گرایش : تجارت الکترونیک

عنوان : تدوین شاخص‌ها و داشبورد ارزیابی و پیش‌بینی پیشرفت تحصیلی دانشجویان با شبکه‌ عصبی و درخت‌ تصمیم C5

دانشگاه قم

دانشکده فنی و مهندسی

پایان‌نامه دوره کارشناسی ارشد مهندسی فناوری اطلاعات

گرایش تجارت الکترونیک

عنوان:

تدوین شاخص‌ها و داشبورد ارزیابی و پیش‌بینی پیشرفت تحصیلی دانشجویان با شبکه‌ عصبی و درخت‌ تصمیم C5

استاد راهنما:

دکتر امیر افسر

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده:

درک عواملی که منجر به موفقیت یا شکست در امتحانات مسئله ای جالب و چالش برانگیز است.مفاهیم مرتبط، تجزیه و تحلیل عوامل موفقیت در امتحانات، ممکن است به درک و به طور بالقوه به بهبود پیشرفت تحصیلی کمک کند.بنابراین در این پژوهش ضمن مروری کلی بر داده کاوی و ویژگی های اصلی یک داشبورد مدیریتی کارا، سعی بر این است تا یک مطالعه موردی بر روی پایگاه داده های دانشگاه های سراسری و آزاد استان قم صورت گیرد تا پیشرفت تحصیلی دانشجویان پیش بینی گردد.

در این پژوهش ابتدا توسط الگوریتم k-means خوشه بندی صورت گرفته است و با استفاده از شاخص ارزیابی SSE ، تعداد خوشه بهینه تعیین گردیده است. بنابراین تعداد خوشه بهینه برای دانشجویان چهار خوشه می باشد و سپس خوشه ها با روش های پیش بینی داده کاوی از جمله شبکه عصبی و درخت تصمیم C5 که از پرکاربردترین و دقیق ترین روش های پیش بینی می باشند، پیش بینی شده اند و درنهایت با استفاده از نتایج این روش ها، شاخص های مناسب یافت شدند و به صورتی روشن در یک داشبورد نمایش داده شدند.

فصل اول: مقدمه و کلیات تحقیق

1-1- مقدمه

پیش‌‌‌‌بینی آینده در زمینه‌های مختلف همواره برای انسان جالب و جذاب بوده است. با اطمینان می‌توان گفت که پیش‌‌‌‌بینی آینده و روند تغییرات در همه‌ی حوزه‌ها از دغدغه‌های اصلی و همیشگی مدیران سطح بالا و میانی می‌باشد. اما همواره مشکلات فراوانی در برابر آن وجود داشته است که انجام پیش‌‌‌‌بینی‌های دقیق و قابل اعتماد را تقریباً غیرممکن نموده است (توحیدی- مقدم و فرهادی، 1391). در سالهای اخیر با توجه به جذابیت‌هایی که در زمینه داده‌کاوی و همچنین پیش‌‌‌‌بینی که یکی از اهداف داده‌کاوی می‌باشد وجود دارد،تحقیقات زیادی در این حوزه انجام شده است.

در حال حاضر در اکثر دانشگاه‌ها بانک‌های اطلاعاتی وسیعی از ویژگی‌های دانشجویان موجود است که حجم بالایی از اطلاعات مربوط به سوابق آموزشی و تحصیلی را شامل می‌شود و از آن‌جایی که امروزه فضای رقابتی شدیدی در دانشگاه‌های مختلف حاکم شده است. مدیران باید سریع‌تر و درست‌تر از قبل تصمیم بگیرند. لازمه چنین امری، دستیابی سریع و دقیق به دانش است و برای دستیابی به دانش، وجود ابزارهای کارا و موثری نظیر داشبوردهای مدیریتی ضرورت دارد. ارزش داشبورد در اتصال ویژگی‌ها و کاربرد مناسب آن در سازمان است. گرچه تا به امروز توافق خاصی در اینکه داشبورد باید دقیقا چگونه باشد و چه کارهایی را انجام دهد، وجود ندارد اما به طور کلی انتظار می‌رود داشبورد، امکان جمع‌آوری، خلاصه‌سازی و ارائه اطلاعات مناسب از منابع مختلفی را داشته باشد تا بدین وسیله کاربر بتواند وضعیت شاخص‌ها را به طور یک‌جا ملاحظه نماید.

هدف از انجام این تحقیق، داده‌کاوی‌آموزشی جهت مقاصد پیش‌‌‌‌بینی پیشرفت تحصیلی دانشجویان به همراه داشبورد آن می‌باشد، داده‌کاوی‌آموزشی یک حوزه علمی نوظهور است که به توسعه روشهایی برای کاوش و اکتشاف دانش در محیط‌های آموزشی می‌پردازد. پیشرفت‌ تحصیلی دانشجویان یکی از اموری است که در امر آموزش مطرح است و از مسائل مورد توجه مدیران آموزشی دانشگاه‌هاست. در این تحقیق سعی شده از داده‌کاوی و فنون آن استفاده شود و با استفاده از داده‌هایی که در دانشگاه‌ها موجود است پیشرفت تحصیلی را پیش‌‌‌‌بینی نمود. پس از آشنایی با ادبیات مسئله و مرورکلی بر ویژگی‌های اصلی یک داشبورد مدیریتی کارا، روشهای داده‌کاوی و پیش‌‌‌‌بینی به عنوان مطالعه موردی کار پیش‌‌‌‌بینی در امور آموزش را انجام داده‌ایم. معدل دانشجویان به‌صورت تصادفی تغییر نمی‌کند، بلکه تغییرات بر اساس یک روند تکرار پذیر و قابل تشخیص صورت می‌گیرد، پس قابل پیش‌‌‌‌بینی است. برای این منظور پس از گردآوری داده‌ها جهت داده‌کاوی، با استفاده از روشهای شبکه‌عصبی و درخت‌تصمیم C5، کار پیش‌‌‌‌بینی را انجام داده ایم و بعد از پیش‌‌‌‌بینی، طراحی و پیاده‌سازی داشبورد آن صورت گرفت.

2-1- تعریف مسأله و بیان سوال های اصلی تحقیق

از هنگامی که رایانه در تحلیل و ذخیره‌سازی داده‌ها به‌کار رفت (1950) پس از حدود 20 سال، حجم داده‌ها در پایگاه‌داده‌ها دو برابر شد ولی پس از گذشت دو دهه و همزمان با پیشرفت فن‌آوری اطلاعات(IT) هر دو سال یکبار حجم داده‌ها، دو برابر شد. همچنین تعداد پایگاه‌داده‌ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده‌ها و آمارشناسان با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می‌افتاد، بسیاری از پایگاه‌داده‌ها چنان گسترش یافته‌اند که شامل چندصدمیلیون یا چندصدمیلیارد رکورد ثبت شده هستند و امکان تحلیل و استخراج اطلاعات با روش‌های معمول آماری از دل انبوه داده‌ها مستلزم چند روز کار با رایانه‌های موجود است. حال با وجود سیستم‌های یکپارچه اطلاعاتی، سیستم‌های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده‌ها در پایگاه‌داده‌های مربوط اضافه شده و باعث به‌وجود آمدن انبارهای ( توده‌های ) عظیمی از داده‌ها شده است به‌طوری که ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه‌داده‌ها بیش از پیش نمایان شده است. داده‌کاوی یا استخراج و کشف سریع و دقیق اطلاعات باارزش و پنهان از این پایگاه‌داده‌ها از جمله اموری است که هر کشور، سازمان و شرکتی به منظور توسعه علمی، فنی و اقتصادی خود به آن نیاز دارد. با توجه به فصول دهم و یازدهم قانون برنامه سوم توسعه در خصوص داد و ستدهای الکترونیکی و همچنین تأکید بر برخورداری کشور از فن‌آوری‌های جدید اطلاعات برای دستیابی آسان به اطلاعات داخلی و خارجی، دولت مکلف شده است امکانات لازم برای دستیابی آسان به اطلاعات، زمینه‌سازی برای اتصال کشور به شبکه‌های جهانی و ایجاد زیرساخت‌های ارتباطی و شاهراه‌های اطلاعاتی فراهم کند. واضح است این امر باعث ایجاد پایگاه‌های عظیم داده‌ها شده و ضرورت استفاده از داده‌کاوی را بیش از پیش نمایان می سازد.

داده‌کاوی فرآیندی تحلیلی است که برای کاوش داده‌ها(معمولا حجم عظیمی از داده‌ها) صورت می‌گیرد و یافته‌ها با به‌کارگیری الگوهایی، احراز اعتبار می‌شوند. این تکنولوژی امروزه دارای کاربرد بسیاروسیعی در حوزه‌های مختلف است به‌گونه‌ای که حدومرزی برای کاربرد این دانش درنظر نگرفته و زمینه‌های کاری این دانش را از ذرات کف اقیانوس‌ها تا اعماق فضا می‌دانند. امروزه، بیش‌ترین کاربرد داده‌کاوی در بانک‌ها، مراکز‌‌ درمانی، بیمارستآن‌ها، بازاریابی هوشمند، مراکز تحقیقاتی و زمینه‌هایی که در آن مقدار زیادی از داده‌ها در حال جمع‌آوری و ذخیره می‌باشد. هدف اصلی داده‌کاوی پیش‌‌‌‌بینی است. یکی از عناصر کلیدی در مدیریت و تصمیم‌گیری، پیش‌‌‌‌بینی پارامترها و متغیرهای لازم در یک محدوده سیستمی می‌باشد.

پیش‌‌‌‌بینی به عنوان یکی از مهم‌ترین شاخه‌های علمی مطرح شده است و روز به روز توسعه و پیشرفت می نماید و در بخش های مختلف به کار گرفته می‌شود. پیشرفت‌های اخیر در تکنولوژی‌های جمع‌آوری و ذخیره‌سازی داده، موجب شده که سازمان‌ها، حجم زیادی از داده‌های مربوط به فعالیت‌های روزانه‌ی خود را انباشته کنند. داده‌هایی که توسط سازمان‌ها جمع‌آوری شده است بسیار ارزشمند است و برای اهداف مختلف می‌تواند مورد استفاده قرار گیرد. یکی از این اهداف پیش‌‌‌‌بینی‌هایی می‌باشد که جهت بهبود عملکرد و برنامه‌ریزی‌هایشان از آن‌ها استفاده می‌نمایند.

مدیران سازمان‌های مختلف به دلیل عدم قطعیت و پیچیدگی محیط سعی بر آن دارند تا مکانیزمی را در اختیار داشته باشند که بتوانند آن‌ها را در امر تصمیم‌گیری‌شان یاری و مشاوره دهد و به همین دلیل سعی در استفاده از روش‌های پیش‌‌‌‌بینی دارند که به واسطه‌ی آن‌ها تخمین‌هایشان به واقعیت نزدیک و خطاهایشان بسیار‌کم باشد. این امر باعث توجه بسیاری به روش‌های نوین پیش‌‌‌‌بینی شده است.

داده‌کاوی پل ارتباطی میان علم آمار، علم کامپیوتر، هوش‌مصنوعی، الگوشناسی، فراگیری ماشین و بازنمایی بصری داده می‌باشد. داده‌کاوی فرایندی پیچیده جهت شناسایی الگوها، مدل‌های صحیح و بالقوه مفید در حجم وسیعی از داده است، به طوریکه این الگوها ومدل‌ها برای انسآن‌ها قابل درک باشند(Han et al,2006). داده‌کاوی به‌صورت یک محصول قابل خریداری نیست، بلکه یک رشته علمی و فرآیندی است که باید به‌صورت یک پروژه پیاده‌سازی شود. در گذشته موسسات آموزشی از مزیت داده‌کاوی به خوبی بعضی حوزه‌های دیگر توجه نداشته‌اند اما در سال‌های اخیر تحقیقات زیادی در زمینه بکارگیری فرآیند داده‌کاوی در امر آموزش صورت می‌گیرد. این زمینه تحقیقاتی جدید، داده‌کاوی‌آموزشی نامیده می‌شود که به امر توسعه روش‌های کشف دانش از داده‌های محیط‌های آموزشی خصوصاً دانشجویان می‌پردازد(Romero et al,2007). داده‌های جمع‌آوری شده در مورد دانشجویان می‌تواند شخصی یا آموزشی باشد که از طریق دفاتر و پایگاه داده‌های موجود در مدارس یا دانشکده‌ها جمع‌‌آوری می‌شوند. این نوع داده‌ها همچنین از طریق سیستم‌های آموزش الکترونیکی قابل دستیابی هستند. با به‌کارگیری تکنیک‌های شبکه‌عصبی و درخت‌تصمیم روی داده‌های آموزشی می توان اطلاعات و دانش مفیدی را از آن‌ها استخراج کرد که این دانش نیز به نوبه خود می‌تواند برای درک و فهم رفتار دانشجویان، کمک در امر آموزش و تدریس، ارزیابی و بهبود برنامه‌آموزشی، افزایش بازدهی و کارایی دانشجویان و اهداف دیگری بکار گرفته شود.

امروزه فضای رقابتی شدیدی در دانشگاه‌های مختلف حاکم شده است. دانشگاه‌ها برای رسیدن به اهداف خود و سبقت گرفتن از یکدیگر در تلاشند. دانشگاه‌ها نیاز به داشبورد دارند تا اطلاعات جزیی را در یک لحظه داشته باشند و این چیزی فراتر از یک نگاه کلی است. داشبوردها جهت نمایش حجم بزرگی از داده‌ها در یک نمایش گرافیکی قابل فهم هستند که کاربران با استفاده از آن‌ها قادر به تحلیل اطلاعات از طریق داده‌ها باشند (LogiXML,2011).

داشبوردهای مدیریتی سیستم‌های نرم‌افزاری نوینی هستند که به سازمان‌ها در جهت غنی‌سازی اهداف با استفاده از اطلاعات و تجزیه و تحلیل آن‌ها کمک می‌کند. داشبورد به مدیران این امکان را می‌دهد تا با تعریف، نظارت و تحلیل شاخص‌ها در ایجاد تراز بین اهداف و فعالیت‌ها و ایجاد یک محیط نمایش مشترک بین اهداف و فعالیت‌ها برای تصمیم‌گیری درست و کارامد اقدام نمایند. یک نکته که معمولا به اشتباه گرفته می‌شود این است که داشبورد تنها برای مدیران ارشد به منظور ارائه اطلاعات جامع از عملکرد سازمان به آن‌ها مورد استفاده قرار می گیرد. امروزه تکنولوژی داشبورد سازمانی به‌گونه‌ای است که می‌تواند در سطوح مختلف سازمان استقرار یابد(زرین،1388).

   در این تحقیق سعی شده است تا با استفاده از اطلاعات مربوط به دانشجویان از جمله سال و ترم ورود به دانشگاه، نوع تاهل، معدل‌های دریافتی در هر ترم، نوع تحصیل، نوع شغل و دیگر اطلاعات دانشجویان دانشگاه‌های سراسری و آزاد اسلامی استان قم و امکانات موجود در محیط نرم‌افزار‌های Sql server، Matlab ، Qlick view ، Clementine ، Excelو همچنین با خوشه‌بندی داده‌ها و بکار بردن تکنیک‌های داده‌کاوی به پیش‌بینی پیشرفت‌ تحصیلی دانشجویان بپردازیم و با استفاده از نتایج پیش‌بینی و نظر خبرگان، شاخص‌ها را تعیین کرده و طراحی و پیاده‌سازی داشبورد مربوطه را انجام دهیم.

در راستای موضوع ارائه شده ما به دنبال آن هستیم تا به سوالات زیر پاسخ دهیم:

1- چه تکنیک داده‌کاوی برای داده‌هایمان پیش‌بینی بهتری دارد؟

2- متغیرهای تاثیرگذار در تعیین شاخص‌ها کدام‌اند؟

مشخص کردن اینکه کدام روش نتایج بهینه و دقیق‌تری ارائه می‌کند و پاسخ به این پرسش‌ها،‌ پیش‌بینی‌ها به طور مناسب انجام شده و این کار فواید زیادی را برای دانشگاه به همراه خواهد داشت.

3-1- ضرورت انجام تحقیق

یکی از چالش‌های جدی در مدیریت امور آموزشی دانشگاه‌ها، پیش‌بینی وضعیت تحصیلی دانشجویان در نیم‌سال‌های آینده به منظور شناسایی دانشجویانی است که دچار پیشرفت یا افت تحصیلی شده و ادامه تحصیل آن‌ها با مشکل روبرو خواهد شد. در این تحقیق با استفاده از تکنیک‌های داده کاوی وضعیت تحصیلی آتی دانشجویان پیش‌بینی شده است. با بکارگیری این تکنیک‌ها و تجزیه و تحلیل و تفسیر داده‌ها مدیران آموزشی می‌توانند مشاوره‌های لازم را برای پیشگیری از رسیدن دانشجویان به وضعیت بحرانی بکار گیرند و همچنین مدیران به استفاده از ابزارهای کارا و موثر مصورسازی داشبورد مدیریتی نیاز دارند تا با نمودارها و اشکال مختلف تفسیر داده‌ها را بهتر درک کنند و بتوانند تصمیم‌گیری صحیح‌تری داشته باشند بنابراین می‌توان این ابزارهای پشتیبان تصمیم‌گیری در سیستم‌های آموزشی را مورد بهره‌برداری قرار داد و نقش مهمی را در ارتقاء سطح علمی دانشگاه‌ها داشت.

تعداد صفحه : 125

قیمت : چهارده هزار تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09124404335        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید

2 پاسخ

بخش دیدگاه ها غیر فعال است.