پایان نامه ارشد رشته زیست شناسی : ارزیابی بیان ژنهای λ-Red در سویه های E.coli, Vibrio Cholerae

متن کامل پایان نامه مقطع کارشناسی ارشد رشته زیست شناسی

با عنوان :  ارزیابی بیان ژنهای λ-Red در سویه های E.coli, Vibrio Cholerae

در ادامه مطلب می توانید تکه هایی از ابتدای این پایان نامه را بخوانید

و در صورت نیاز به متن کامل آن می توانید از لینک پرداخت و دانلود آنی برای خرید این پایان نامه اقدام نمائید.

دانشگاه آزاد اسلامی

واحد دامغان

دانشکده: علوم پایه، گروه زیست شناسی

پایان­نامۀ کارشناسی ارشد (M.Sc)

گرایش: میکروبیولوژی

  عنوان:

ارزیابی بیان ژنهای λ-Red در سویه های E.coli, Vibrio Cholerae

& Shigella dysentrieaeجهت بهینه شدن نو ترکیبی همسان

 استاد راهنما:

دکترسید محمود امین مرعشی

 استاد مشاور:

دکتر رضا نظام زاده

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

تکه هایی از متن به عنوان نمونه : (ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب

عنوان         صفحه

چکیده 1

فصل اول: مقدمه

1-1 انتقال ژن در باکتری.. 3

1-2 ترانسفورماسیون. 4

1-3 نوترکیبی.. 5

1-4 تعریف PCR.. 7

1-4-1 کاربردهای PCR : 10

1-4-2 تهیه ی نسخه های متعدد از یک ژن. 10

1-4-3 مراحل آزمایشگاهی PCR.. 10

1-5 Real-Time PCR ‏……………………. 11

1-5-1کاربردهای Real Time PCR.. 11

1-5-2 اصول کارReal Time PCR.. 12

1-5-3روش کار Real Time PCR.. 12

1-5-4 آنالیزهای کمی در Real time PCR.. 13

1-5-5 روش منحنی استاندارد(مقایسه مطلق) 13

1-5-6 روش آستانه نسبی(مقایسه نسبی) 13

1-6E.coli 14

1-6-1 خصوصیات عمومی.. 14

1-6-2 تقسیم‌های دوتایی و پیاپی E.coli 15

1-6-3 کاربردها 15

1-6-4 تشخیص آزمایشگاهی باکتری E.coli 16

1-7 Shigella. 16

1-7-1 تشخیص آزمایشگاهی باکتری Shigella. 16

1-7-2 بیماری زایی.. 17

1-8 Vibrio Cholerae. 17

1-8-1 شناسایی و طبقه بندی.. 18

1-8-2 فیزیولوژی.. 19

1-8-3 عوامل موثر در بیماری زایی.. 19

1-8-4 تأیید بیوشیمیایی.. 19

1-8-4-1واکنش بر روی محیط TS یا KIA.. 20

1-8-4-2 تست­های دکربوکسیلاز- دهیدرولاز. 20

1-8-4-3 تست نیاز به نمک برای رشد. 20

1-8-4-4 حساسیت به ترکیب ویبریواستاتیک 129/O.. 20

1-9 رشد و نمو باکتریها 20

1-10 زمان تقسیم سلولی.. 21

1-11 مراحل رشد و منحنی رشد باکتریها 21

1-12 منحنی رشد باکتریایی.. 21

1-12-1 مرحله­ی خفته یا تاخیری (Lag phase) 22

1-12-2 مرحله ی فعال تکثیر یا رشد و تکثیر لگاریتمی (Logphase) 22

1-12-3  مرحله ی سکون یا تکثیر کند (Stationary phase) 22

1-12-4 مرحله ی زوال یا مرگ (Deathphase) 23

1-13سرعت رشد و زمان نسل. 23

1- 14 محاسبه زمان نسل باکتری.. 23

1-15 شیوه های سنجش تعداد سلول. 24

1-16 محیطهای کشت.. 25

1-16-1محیط کشت مایع. 25

1-16-2 محیط کشت جامد. 25

1-17اهداف کلی.. 25

1-18 اهداف اختصاصی.. 25

1-19 پرسش­های تحقیق. 26

1-20فرضیه های تحقیق. 26

فصل دوم: سابقه و پیشینه

2-1 تاریخچه ترانسفورماسیون. 28

2-2 سیستم نوترکیبی مبتنی برλ-Red. 29

2-3 پلاسمید PKD46 30

فصل سوم: مواد و روش ها

3-1 دستگاه‌ها 32

3-2 موادشیمیایی.. 32

3-3 کیت­ها 32

3-4 میکروارگانیسم‌ها 32

3-5 کشت سویه انتخابی.. 32

3-6 Transformation. 33

3-7 تهیه منحنی لگاریتمی.. 34

3-8 استخراج Total RNA.. 35

3-9 Reverse Transcriptase (RT-PCR) 36

3-9-1 طراحی پرایمرهای اختصاصی جهتReal-Time PCR.. 36

3-9-2 Real-Time PCR (RT-qPCR) 37

فصل چهارم: نتایج

4-1 استخراج Total RNA.. 40

4-2 نتایج Real-Time PCR.. 44

4-3 تایید پرایمرهای Real-Time PCR.. 45

فصل پنجم: بحث و نتیجه گیری

5-1 بحث.. 48

5-2 محدودیت ها 52

5-3 پیشنهادات.. 52

فهرست منابع و مآخذ. 53

چکیده انگلیسی.. 56

چکیده

نوترکیبی همسان فرایندی است که در آن میتوان به تحریک ژنهای خاصی اقدام نمود که در نهایت با عملکرد جدید این ژنها میتوان یک ارگانیسم را به تولید یا عدم تولید یک پروتئین خاص وادار نمود. در حال حاضر تحقیقات گوناگونی وجود دارد که در آنها از نوترکیببی همسان استفاده می­شود. هرچقدر این روشها بهینه­تر گردند، مسلما فرایندهای اقدامات آزمایشگاهی را تسهیل خواهد نمود، در نوترکیبی همسان قطعه ای از محصول PCR به داخل کروموزوم باکتری وارد شده و با استفاده از وکتورهای λ-Red قادرخواهیم بود که ژن recA را در میزبان تحریک کرده ونوترکیبی همسان را به انجام برسانیم. درمطالعات قبلی نشان داده شده است که طول توالی­های انتهایی (flank) دو سر انتهای محصولPCR نقش مهمی در انجام نوترکیبی همسان دارد، ولی انتخاب طول flank طبق قاعده و قانون خاصی نیست و محقق باید بصورت آزمون و خطا این طول را انتخاب نماید. در مطالعات انجام شده بر سویه های استاندارد، طول این flank میتواند از 50 تا 2000 جفت باز متغیر می باشد.

در این مطالعه ابتدا باکتری های استاندارد dysentrieae Shigella,E.coli, Vibrio Cholerae در محیط غذایی کشت داده می­شود و سپس کلنی مساوی از هر یک از باکتری ها را انتخاب و جهت استخراج totalRNA به کار میرود. پس از تهیه total RNA آن را تبدیل به total cDNA می کنیم،. جهت تعیین وارزیابی بیان ژن l-Red از تکنیک Real-timePCR با استفاده از SYBR greenІ و روش Relative استفاده نموده و میزان بیان ژنهای l-Red را در هر میزبان به دست خواهد داد. ژنهای l-Red ومیزان بیان آن در میزبان های متفاوت متغیر بوده و قطعا با ارزیابی بیان آن
می توان تا حدود زیادی طول مناسب را جهت نوترکیبی همسان تعیین کرد. در آن پایان نامه تلاش میگردد تا فرایند انجام نوترکیبی همسان در سویه های باکتری dysentrieae Shigella,E.coli, Vibrio Cholerae را تسهیل نمود. به عبارتی قرار است بررسی گردد آیا نتایج بدست آمده باعث کمک به بهبود فرایند نوترکیبی همسان میشود یا خیر؟ و واضح است که هر چه میزان بیان ژنهای l-Red بیشتر باشد، بازده نوترکیبی همسان با طول کمتر flank نیز میسرتر است.

واژگان کلیدی: نوترکیبی همولوگ، ژن l-Red، dysentrieae Shigella,E.coli, Vibrio Cholerae

1-1 انتقال ژن در باکتری

در اکثر باکتری ها توراث ژنها اغلب به صورت عمودی است اما قسمت قابل توجهی از آن توسط انتقال جانبی یا عرضی بین باکتری ها انتقال می یابد. عناصر ژنتیکی متحرک مثل پلاسمیدها، باکتریوفاژها و ترانسپوزون ها به همراه تغییرات ژنی مثل حذف، اضافه شدن و ترتیب دوباره ژن ها سیر تکاملی پروکاریوتها را تسریع کرده اند و باعث ایجاد تغییرات در ژنوم باکتری ها و در نتیجه ایجاد تنوع ژنتیکی گردیده اند. باکتری ها با توجه به داشتن ژنوم کوچکتر نسبت به یوکاریوتها توانایی بیشتری برای به
اشتراک گذاشتن ژنوم­شان از طریق انتقال عرضی ژن توسط هم یوغی، ترانسداکشن[1] و ترانسفورمیشن[2] دارند. مهمترین فرآیند هم یوغی است که طی تمـاس مستقیـم سلول با سلول اتفاق می­افتد
(Proter 1997; Burrus 2006).

هم یوغی امکان تغیرات ژنتیکی بین باکتریها و گاه حتی بین سلولهای یوکاریوتی را امکان پذیر
می سازد و اغلب توسط آن ژن های موجود بر روی « پلاسمیدهای کانژوگه» منتقل می شوند. ترانسداکشن نوع دیگری از انتقال افقی ژن است که توسط ویروس ها و باکتریوفاژها صورت می پذیرد. بعضی از باکتریوفاژها می توانند به صورت یک پروفاژ به داخل کروموزوم باکتری میزبان وارد شده و باعث لیزوژنی آن شوند. پروفاژها قسمت مهمی از اکتساب افقی ژن را در DNA بسیاری از باکتریها به خود اختصاص داده اند. گاهی اوقات باکتریوفاژها باعث انتقال قسمت های متحرک دیگری از DNA باکتری و یا قسمتی دیگر از DNA ثابت باکتری می شوند و این زمانی اتفاق می افتد که خروج فاژ به صورت دقیق صورت نگیرد. این مرحله ترانسداکشن تخصصی [3] نامیده می شود.

سومین نحوه انتقال ترانسفورمیشن است که در آن DNA آزاد از محیط برداشته میشود. برای پایدار ماندن DNA وارد شده به ژنوم میزبان طی هر سه روش احتیاج به یک سری مراحل حمایت کننده مثل نوترکیبی یکسان[4] می باشد. همگان قبول دارند که اکتساب توالی های جدید و توسعه ژنوم امری حیاتی برای تکامل میباشند. این که آیا ژن های اکتسابی در باکتری نگه داشته می شوند و یا این که چگونه باقی
می مانند بستگی به عملکرد آن ژنها و فشار انتخابی محیط برای نگه داشتن آن دارد .( Proter 1997)

1-2 ترانسفورماسیون

ترانسفورماسیون یکی از راههای انتقال توارث به سایر باکتریها میباشد. در این روش یک تکه DNA دو رشته ای آزاد در محیط به سطح یک باکتری دیگر متصل شده و تنها یک رشته آن وارد باکتری شده و در کروموزوم باکتری میزبان ادغام می شود. برای داخل شدن قطعه ای از DNA در درون کروموزوم، عملکرد اپرون UVrABCD (UV در اول اسم اپرون مخفف پرتو UVاست ) ژن rec A بر اثر عوامل مثل uv ، عوامل شیمیایی و ورود DNA تک رشته ای به درون باکتری فعال میشود و rABCD مخفف ژنهایrecA, recB, recC و recD میباشد) این اپرون شامل ژنهای recA, recB, recC وrecD میباشد. فرآیند نوترکیبی[5] بواسطه پروتئین RecA فعال میگردد. در این فرآیند، اگر DNAتک رشته ای وارد شده در باکتری، با ناحیه ای از کروموزوم تشابه داشته باشد، تعویض میگردد که این جابجایی بواسطه پروتئین RecA انجام
می پذیرد. از طرفی ژنهایrecB, recC وrecD نقش تنظیمی، با عملکرد منفی بر روی ژن recA را بازی میکنند(Hamood et al., 1986).

در حال حاضر، در آزمایشگاههای تحقیقاتی، با استفاده از این سیستم و نحوه ادغام فاژ λ وکتوری (وکتور ها مولکول‌های DNA ای هستند که برای کلون کردن قطعات DNA در سلول های میزبان به کار می‌روند) را تولید نموده اند که میزان نوترکیبی را در باکتریها افزایش میدهند. در این وکتور سه ژن exo, bet وgam را تحت یک پروموتری که با L-arabinose تحریک می شود قرار داده اند. عملکرد این سه ژن بدین صورت است که پروتئین Exo باعث هضم نوکلئوتیدها از قسمت 5’ انتهای DNA دو رشته ای
می­شود و پروتئین Bet با حفاظت از قسمت تک رشته ای 3’ بوجود آمده، مانع تخریب آن میگردد. نهایتا پروتئین Gam با ممانعت از عملکرد ژنهای recB,recC وrecD باعث تحریک بیان ژن recA در باکتریها می شود (شکل1-1).

مارکر مقاومت آنتی بیوتیکی در این وکتور آمپی سیلین بوده و از نظر تعداد پلاسمید در باکتریها، جزء پلاسمیدهای شمارش تکرار پایین[6]محسوب میگردد. بهترین دما، برای تکثیر این وکتور 30 درجه سانتیگراد بوده و در دمای 42-37 درجه سانتیگراد از دست میرود. بنابراین از این نظر، جزء پلاسمیدهای حساس به دما[7] نیز تقسیم­بندی میگردد (Yamamoto et al., 2009). مهمترین و کاربردی ترین پلاسمید در این زمینه pKD46 بوده که قابلیت تکثیر، در dysentrieae Shigella,E.coli, Vibrio Cholerae را دارد.

شکل (1-1) عملکرد ژنهای exo, bet وgam بر روی DNA دو رشته ای

1-3 نوترکیبی

نوترکیبی[8] ژنتیکی فرآیندی است؛ که طی آن مولکول اسیدنوکلئیک شکسته شده و به شکل­های مختلف به یکدیگر متصل می شوند. این عمل در بیشتر مواقع مربوط به DNA و گاهی درRNA نیز دیده
می شود. نوترکیبی می تواند بین کروموزوم های همولوگ باشد که به آن نوترکیبی همسان گفته می شود. نوترکیبی به طور معمول روشی برای ترمیم DNA پروکاریوت و یوکاریوت ها می باشد که در یوکاریوت ها در میوز رخ داده و به آن فرآیند کراسینگ اور می گویند. در طی آن جابه جایی کروموزوم پدر و مادری رخ می دهد و می‌تواند سبب تولید الل جدید شود. در سیستم ایمنی این فرآیند نقش بسیار مهمی را ایفا می­کند وسبب مقاومت بدن در مقابل بیماریزاهای مختلف می شود.

شکل( 1-2) نوترکیبی

نوترکیبی روشی مفید در مهندسی ژنتیک محسوب می شود. از نوترکیبی می توان جهت ایجاد تغییر در نوکلئوتیدهای ژنوم باکتری ها، ویروس ها،BACs[9]،[10]PAC و پلاسمیدها استفاده کرد. ولی لازم به ذکر است که نوترکیبی در محیط زنده[11] نیز انجام می پذیرد. بنابراین برای ایجاد چنین تغییری در ژنوم می توان از نوترکیبی همسان[12] استفاده کرد. در نوترکیبی همسان باید از محصول PCR[13] که انتهاهای آن به صورت تک رشته­ای در آمده و یا از تک رشته های DNAسنتتیک استفاده نمود. در پروکاریوت ها میزان ایجاد نوترکیبی طبیعی 10-5-10-4 می­باشد ولی میزان ایجاد نوترکیبی همسان 10-1/0 درصد می باشد. در نوترکیبی همسان مهمترین فاکتور طول قسمتهای انتهایی محصول PCR می باشد که به خاطر عملکرد محصول ژن bet صورت تک رشته ای در آمده است. هر چه میزان طول ترادف های همسان بیشتر باشد بازده ی نوترکیبی همسان بیشتر خواهد بود. پدیده ی نوترکیبی همسان به واسطه ی بیان ژنrecA در باکتری ها صورت
می گیرد. بنابراین هر چه میزان بیان ژن recAبیشتر باشد بازدهی نوترکیبی همسان نیز بیشتر خواهد بود (Sharan et al.,2009). نوترکیبی همسان در باکتریها بواسطه ی حضور پر رنگ بیان ژن recA صورت
می گیرد.

بیان ژن recAبواسطه ی اپرون recBCD. (اپرون واحد عملکرد DNAژنومی است که شامل مجموعه‌ای از ژن‌های تحت کنترل یک سیگنال نظارتی یا پروموتر است) کنترل و سرکوب می­گردد تا از بیان افسار گسیخته ی آن جلوگیری شود. کاهش بیان ژن recA باعث کاهش میزان نوترکیبی می گردد. در نتیجه برای افزایش بازدهی آن به تحریک بیان ژن recA به عنوان کلید حل این معما استفاده کرد
(Murphy et al., 2000).

سیستم نوترکیبی مبتنی بر λRed در تغییر ژن ها بسیار سودمند میباشد. شیوه های ساده ای برای غیر فعال سازی و تغییر ژنها و نوکلئوتیدها در باکتریها با استفاده از تکنیک بازسازی ژنتیکی سلول وجود دارد، این امر با کمک سیستم نوترکیبی λRed و محصول PCR حامل یک کاست مقاومت انتی بیوتیکی روی کروموزوم باکتری صورت می گیرد و هر چه طول انتهای همولوگ بیشتر باشد، بازدهی نوترکیبی همسان بیشتر خواهد بود (Yamamoto et al., 2009).

نوترکیبی همولوگ در ترمیم DNAآسیب دیده در حین همانندسازی DNA موثر است. در سلول­های یوکاریوتیک میزان نوترکیبی همسان 8-16 درصد گزارش شده است(Saleh Gohari et al., 2005). مطالعات نشان داد که نوترکیبی همسان در باکتری , Vibrio Choleraeباعث ایجاد سویه های زنده ضعیف شده می گردد. ژنهای mer،ctxB،hlyA بواسطه نوترکیبی همسان دگرگون شده و باکتری های وحشی تبدیل به سویه های کاربردیCVD109 گردیدند. در این پروسه توالی­های یکسان انتهایی با طول­های متفاوت 100،500،1000 نوکلئوتیدی بررسی شده (Michalski et al.,1993). نهایتا مقالات و گزارشات نشان می دهد که هر چه میزان بیان ژن recA بیشتر باشد، بازدهی نوترکیبی همسان نیز بیشتر خواهد بود. ولی نکته مهم این است که میزان بیان ژن recA در باکتری های متفاوت نیزاختلاف نسبتا جزئی دارد، بنابراین ارزیابی و سنجش بیان ژن recA در بهبود و افزایش بازدهی نوترکیبی همسان مفید واقع خواهد شد و برهمگان واضح است که فرایند نوترکیبی همسان برای ایجاد واکسن و سویه های زنده ضعیف شده و همچنین ارزیابی ژنهای کنترلی مفید خواهد بود.

1-4 تعریف PCR[14]

این تکنیک در اواسط دهه­ی 1980 بوسیله ی کری مولیس معرفی شد. به دلیل کاربردها و مزیت­های بسیار زیاد آن به سرعت در زیست شناسی مولکولی گسترش پیدا کرد. امروزه این روش تقریباً در تمامی آزمایشگاهها ی زیست مولکولی جزو کارهای متداول می باشد و به صورت اتوماتیک بوسیله­ی کامپیوتر انجام می شود.این تکنیک تمامی مشکلات قبلی در زیست مولکولی که ناشی از عدم دسترسی به مقادیر زیاد از DNA یکسان بود را برطرف کرد. برای مثال قبلاً برای بدست آوردن نسخه­های متعدد از یک ژن خاص می بایست این ژن را به داخل حامل مناسب وارد کرده و در یک باکتری تکثیر کنند ولی امروزه این کار را به سادگی و با استفاده از PCRانجام می دهند. PCR به معنی واکنش زنجیره ای پلی مراز می باشد. هدف از آن سنتز رشته هایDNA   جدید از روی رشته های الگو است که به صورت زنجیر وار تکرار
می­شود. PCR دارای انواع متعددی می باشد که یکی از آنها Real TimePCRاست. دراین روش از ژل آگارز استفاده نمی شود و امروزه با دستگاه های به نام لایت سایکلر[15] که مقدار محصول در هر سیکل را نمایش می دهد بسیار ساده شده است. در ساده ترین حالت از اتیدیوم بروماید[16] به عنوان رنگ تداخلی با DNA برای تعیین مقدار محصو ل تولید شده در هرسیکل می توان استفاده کرد. ازآنجایی که قابلیت فلورسانس اتیدیوم بروماید در حضور DNA دورشته ای افزایش می یابد، می توان از آن برای تشخیص وتعیین مقدارمحصول دورشته ای استفاده کرد. اتیدیوم بروماید تقریبا هیچ گونه اثری برروی مقدارو خصوصیات واکنش های PCR، ندارد بنابراین تکثیر توالی های خاص DNA وتشخیص همزمان آن با دستگاه ترانس ایلومیناتور فرابنفش[17] امکان پذیر می گردد.

PCR از نظر اصول عملی تشابه زیادی به همانند سازی DNA دارد و در واقع برگرفته از آن است . یاد آوری می شود که DNA پلیمراز DNA تک رشته ای را از جهت  5َ به  3َ به عنوان الگو مورد استفاده قرار می دهد ورشته مکمل را در جهت5َبه 3َمی سازد. همچنین DNA پلیمراز برای شروع احتیاج به یک قطعه اولیه (شناساگر) دارد.

برای انجام PCR ، DNAپلیمراز ، نوکلئوتید تری فسفات ها و پرایمر لازم هستند. از آنجائیکه DNA دو رشته ای است، دو نوع پرایمر درPCR موردنیاز است. این دو پرایمر دو عمل انجام می دهند، اول اینکه محل ژنی که باید تکثیر شود را مشخص می نمایند و دوم اینکه اندازه ی قطعات تکثیر شونده را تعیین
می کنند . عمل اول کاملاَ مشخص است، در مورد عمل دوم باید گفت که وقتی این دو شناساگر به دو ناحیه­ی مختلف DNA و به سمت هم قرار می­گیرند DNA پلیمراز تنها قطعات را در بین این دو ناحیه همانندسازی می­کند و به این ترتیب طول قطعات ساخته شده تعیین می­شود. برای شروع PCR ، DNA الگو، پرایمر ها و نوکلئوتید تری فسفات ها و DNA پلیمراز در یک لوله با هم مخلوط می شوند. سپس لوله را گرم می کنند تا دو رشته DNA از هم جدا شوند. سپس لوله را سرد می کنند تا پرایمر ها به نواحی مورد نظر متصل شوند و DNA پلیمراز شروع به همانند سازی از روی DNA بنماید. بعد از مدت زمان لازم برای همانند سازی بار دیگر پرایمرها به نواحی مکمل خود متصل شوند. چون در مرحله ی قبل رشته DNA در ناحیه مورد نظر مضاعف شده است، در این مرحله چهار رشته ی الگو برای همانند سازی وجود دارد و در نتیجه در پایان این مرحله بوجود می آید، و در مرحله ی بعد 16 نسخه و به همین صورت بطور تصاعدی تعداد نسخه های ژن ها زیاد می شود .

در ابتدای طراحی PCR از آنزیم DNA پلیمراز E.coli استفاده شد ولی این آنزیم به حرارت حساس می باشد و بنابراین پس از هر بار حرارت دادن محیط واکنش تا دمای 94 درجه­ی سانتی­گراد، افزودن دوباره­ی آنزیم تازه به محیط لازم بود. یکی از مهم­ترین کشفیات در این زمینه این بود که باکتریهای
چشمه­های آب گرم دارای DNA پلیمراز هایی هستند که نسبت به حرارت مقاوم بوده و حتی در دمای بالا فعالیت بهتری دارند . برای مثال باکتری  Thermus  aquaticus دارای DNA پلیمرازی است که در دمای 94 درجه ی سانتی گراد کاملاَ پایدار است و همچنین دمای اپتیمم عمل آن نیز 72 درجه ی سانتی گراد می باشد، این DNA پلیمراز که بطور خلاصه Taq پلیمراز نامیده می شود باعث شد که براحتی PCR به صورت اتوماتیک انجام شود و با افزودن یکبار آنزیم Taq پلیمراز دیگر نیازی به اضافه کردن مجدد آن نباشد .

مزیت بسیار مهم دیگر Taq پلیمراز افزایش حساسیت و دقت PCR می باشد. در دمای پایین
(30 درجه سانتی­گراد) (که برای DNA پلیمراز E.coli بکار می­رفت) پرایمرها ممکن است به جایگاههایی که توالی تا حدودی مشابه دارند نیز متصل شوند، زیرا در دمای پایین تعداد کمتری پیوند هیدروژنی برای اتصال پرایمرها نیاز است. بنابراین پرایمرها با اتصال به نواحی نسبتاَ مشابه، باعث ایجاد اشتباه در انجام مراحل PCR می­شوند. ولی وقتی که واکنش در دمای 72 درجه (دمای اپتیمم فعالیت Taq پلیمراز) انجام شود اتصال پرایمر ها به نواحی غیر از ناحِیه­ی اصلی کاهش می­یابد. به این صورت پس از پایان PCR
رشته های DNA کاملاَ مشابه و خالص بدست خواهد آمد. برای دیدن قطعات تکثیر شده DNA می­توان براحتی از الکتروفورز برای ژل آگاروز و رنگ امیزی اتیدیوم بروماید استفاده کرد .

تعداد صفحه :68

قیمت : چهارده هزار تومان

بلافاصله پس از پرداخت ، لینک دانلود به شما نشان داده می شود

و به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09124404335        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

شماره کارت :  6037997263131360 بانک ملی به نام محمد علی رودسرابی

11

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید