پایان نامه ارشد : شبیه سازی عددی تأثیرات تولیدکننده گردابه بر افزایش انتقال حرارت سیالات غیر نیوتنی

متن کامل پایان نامه مقطع کارشناسی ارشد رشته : مکانیک 

عنوان : شبیه سازی عددی تأثیرات تولیدکننده گردابه بر افزایش انتقال حرارت سیالات غیر نیوتنی

دانشکده فنی و مهندسی

گروه مکانیک

 پایان نامه

برای دریافت درجه کارشناسی ارشد

 عنوان پایان نامه

شبیه سازی عددی تأثیرات تولیدکننده گردابه بر افزایش انتقال حرارت سیالات غیر نیوتنی در کانال مربعی

استاد راهنما: دکتر محمدرضا نظری

استاد مشاور: دکتر محمد سفید

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود(در فایل دانلودی نام نویسنده موجود است)تکه هایی از متن پایان نامه به عنوان نمونه :(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)چکیدهدست‌یابی به نرخ‌های بالاتر انتقال حرارت با استفاده از تکنیک‌های مختلف که می‌تواند منتج به ذخیره میزان قابل توجه انرژی شده و همچنین منجر به تولید دستگاه‌های فشرده‌تر و ارزانتر همراه با بازدهی حرارتی بیشتر شود مورد توجه محققین قرار گرفته‌است. تولید گردابه یکی از بهترین روش‌هایی است که برای افزایش انتقال حرارت به‌کارگرفته‌ می‌شود. در سالهای اخیر به علت کاربرد گسترده سیالات غیرنیوتنی در شیمی، داروسازی، پتروشیمی، صنایع غذایی و صنایع الکترونیکی، این گروه از سیالات توجه ویژه‌ای را به خود جلب کرده‌اند. با توجه به اهمیت سیالات غیرنیوتنی در صنعت، و به منظور افزایش کارایی در بالا بردن انتقال حرارت، این بررسی برای سیالات غیرنیوتنی انجام شده‌است.در تحقیق حاضر، ابتدا ساختار جریان و انتقال حرارت از دو سیلندر مربعی پشت سرهم در معرض یک سیال غیرنیوتنی با مدل پاورلا به صورت دوبعدی، و سپس رفتار جریان و انتقال حرارت از یک جفت تولید کننده گردابه در یک کانال مربعی به صورت سه بعدی و با استفاده از روش حجم محدود و الگوریتم SIMPLEC به صورت عددی مورد مطالعه قرار گرفته است. در این تحقیق، جریان سیال غیرنیوتنی تراکم ناپذیر و آرام در محدوده اعداد رینولدز 500 Re 50 بررسی شده‌است. عدد پرانتل برابر با 50 در نظر گرفته شده‌است. همچنین تأثیر اندیس پاورلا بر رفتار جریان و انتقال حرارت در محدوده 8/1 6/0 مورد بررسی قرار گرفته است. در این تحقیق در حالت دوبعدی تأثیر زاویه انحراف سیلندرها از جریان اصلی و نیز فاصله بین سیلندرها، و در حالت سه بعدی تأثیر ارتفاع تولیدکننده‌های گردابه بر رفتار جریان و انتقال حرارت بررسی شدند. نتایج به دست آمده در حالت دو بعدی شامل ضرایب درگ  و لیفت، ضریب فشار و عدد ناسلت بر روی وجوه سیلندرها می‌باشد. در حالت سه بعدی ضرایب فشار و اصطکاک روی دیواره‌های کانال، دمای بالک ( )، فاکتور کولبرن، عدد ناسلت و در نهایت پارامتر JF به عنوان ضریب عملکرد حرارتی به عنوان مقیاسی برای عملکرد کانال در حالت با و بدون تولیدکننده گردابه به دست آمد. نتایج مسئله دوبعدی نشان داد که با افزایش اندیس پاورلا و کاهش زاویه انحراف سیلندرها و همچنین کاهش فاصله بین سیلندری عدد استروهال کاهش می‌یابد. با کاهش اندیس پاورلا و نیز با افرایش فاصله بین سیلندری عدد ناسلت کلی روی وجوه هردو سیلندر افزایش می‌یابد.همچنین در حالت سه‌بعدی نتیجه شد که سیالات شبه پلاستیک نسبت به دیگر سیالات در افزایش ضریب عملکرد کلی کانال به طور مؤثرتری عمل می‌کنند. همچنین کاهش ارتفاع تولید کننده گردابه عملکرد کلی کانال را افزایش می‌دهد.فهرست مطالبفصل اول.. 1مقدمه. 11-1 لایه مرزی.. 11-2 تبدیل جریان آرام به آشفته. 21-3 جدایی جریان.. 31-4 روش‌های افزایش انتقال حرارت... 41-5 گردابه. 51-6 ریزش گردابه. 51-7 تولید کننده‌های گردابه. 71-8 کاربردهای تولیدکننده گردابه. 81-9 سیالات غیر نیوتنی.. 91-9-1 سیال مستقل از زمان.. 101-9-1-1  سیالات شبه پلاستیک.... 111-9-1-2  سیال ویسکوپلاستیک.... 151-9-1-3 سیالات دایلاتنت... 181-9-2 سیال وابسته به زمان.. 181-10جمع بندی.. 19بررسی و مرور تحقیقات گذشته. 202-1مقدمه. 202-2تحقیقات انجام شده برای سیالات نیوتنی.. 202-3تحقیقات انجام شده برای سیالات غیرنیوتنی.. 272- 4جمع بندی.. 39فصل سوم. 40تعریف مسئله و روش حل.. 403-1هندسه مسئله دو بعدی.. 403-2 هندسه مسئله سه بعدی.. 423-3 معادلات حاکم در جریان آرام. 443-4 روش حل معادلات... 453-4-1گسسته‌سازی معادلات حاکم.. 463-4-2جمله جابجایی.. 473-4-2-1طرح اختلاف مرکزی.. 483-4-2-2طرح اختلاف بالادست... 483-4-2-3طرح اختلاف پیوندی.. 493-4-2-4طرح اختلاف بالادست مرتبه دوم(QUICK) 503-4-2-5 طرح اختلاف CHARM 503-4-3 ترم نفوذ. 513-5 الگوریتم حل سرعت-فشار 513-6 درونیابی ری-چو. 543-7 گسسته سازی زمانی.. 553-8 روند حل عددی.. 553-9 شرایط مرزی.. 563-9-1 شرط مرزی ورودی.. 563-9-2شرط مرزی خروجی.. 563-9-3شرط مرزی دیواره 573-10 نحوه شبکه بندی.. 57فصل چهارم. 60تجزیه و تحلیل نتایج.. 604-1 مقدمه. 604-2 نتایج مسئله دوبعدی.. 604-2-1 بررسی شبکه. 604-2-2 اعتبار سنجی نتایج.. 614-2-3 ارائه و تحلیل نتایج.. 634-2-4 بررسی تأثیر فاصله بین سیلندری در افزایش انتقال حرارت و ساختار جریان.. 994-3 نتایج مسئله سه بعدی.. 1164-3-1 بررسی شبکه. 1174-3-2 ارائه و تحلیل نتایج.. 1184-3-3 تأثیر ارتفاع تولید کننده گردابه بر ساختار جریان و انتقال حرارت... 1334-4 جمع بندی، نتیجه گیری و پیشنهادات... 141منابع و مآخذ. 1431 لایه مرزیلایه مرزی هیدرودینامیکی (شکل 1-1)، ناحیه ای از جریان است که در آن، نیروهای تنش برشی، نیروهای به وجود آمده ناشی از حضور دیواره جامد می باشند یا ناحیه ای است که جریان اطراف متأثر از حضور دیواره می باشند. به عبارت دیگر، لایه مرزی هیدرودینامیکی ناحیه ای از جریان است که در آن سیال اصطکاک و درگ[1] حاصل از حضور دیواره را حس می‌نماید. در این حالت، نزدیکترین مولکولها به دیواره ( که به دیواره چسبیده‌اند) به واسطه شرط عدم لغزش، نسبت به دیوار اصلاً حرکت نمی‌کنند. با فاصله گرفتن از دیواره، رفته رفته اثر دیواره بر روی جریان آنقدر کم می‌شود که دیگر جریان حضور دیواره را حس نمی‌کند، یا به عبارت دیگر اثر دیواره بر روی لایه های دور جریان از بین می‌رود. به این ناحیه به اندازه کافی دور از دیواره و غیر متأثر از دیواره اصطلاحاً ناحیه جریان آزاد گفته می‌شود. از نقطه نظر انتقال حرارت، لایه مرزی حرارتی (شکل1-2)، ناحیه‌ای است که در آن از نقطه نظر توزیع دما، جریان اطراف متأثر از حضور دیواره‌ای با دمای متفاوت از جریان است. تشکیل لایه مرزی حرارتی و لایه لایه شدن سیال باعث تشکیل عایق و تشکیل مقاومت در مقابل انتقال حرارت از دیواره به سیال می‌گردد. در لایه مرزی تشکیل شده در جریان های آشفته، به واسطه حرکات آشفته جریان، شکل منظم لایه‌های جریان مجاور دیواره از بین رفته و لذا لایه‌های ممانعت کننده میان دیواره و جریان آزاد به نوعی کنار رفته و انتقال حرارت بهتری در مقایسه با جریان‌های آرام صورت می‌گیرد.شکل 1-1  لایه مرزی هیدرودینامیکی تشکیل شده بر روی صفحه تخت[1]شکل 1-2  لایه مرزی حرارتی تشکیل شده بر روی صفحه تخت[1]1-2 تبدیل جریان آرام به آشفتهبرای رسیدن به جریان آشفته مخصوصاً بر روی سطوح جامد و در داخل کانال‌های باز و یا لوله‌ها، ابتدا جریان بایستی از حالت آرام وارد مرحله گذر از حالت آرام به آشفته و در نهایت وارد فاز جریان آشفته گردد. گاهی اوقات نیز ممکن است به واسطه عوامل مختلف خارجی، ناحیه گذرا کوچک شده و یا حتی ناپدید گردد که در این صورت تبدیل مستقیم جریان آرام به آشفته در طول یک مسیر کوتاه را شاهد خواهیم بود. به عنوان مثال، در لایه مرزی تشکیل شده بر روی سطوح غیر هموار و یا بر روی سطوح دارای انتقال جرم از طریق سطوح و یا در جریان‌های اختلاطی و یا در جریان‌های مافوق صوتی که اندرکنش شوک و لایه مرزی را داریم می‌توان حالاتی را مشاهده نمود که در آنها تبدیل جریان آرام به آشفته در طی یک فاصله بسیار کوتاه را شاهد باشیم.گذر از حالت جریان آرام به آشفته در طی فرآیندی رخ می دهد که در آن هسته‌ها و نطفه‌های محلی آشفتگی آنقدر بر روی هم انباشته می‌شوند که تمام میدان جریان را پر می‌کنند. این فرآیند را می‌توان همانند آلودگی تدریجی یک جریان عبوری از روی یک سطح آلوده درنظرگرفت که در فواصل و زمان‌های کوتاه، بخش عمده‌ای از جریان پاکیزه و تنها بخش کوچکی از آن آلوده می‌باشد، اما چنانچه به این فرآیند فرصت و مکان کافی داده‌ شود و هیچ عامل از بین برنده آلودگی نیز وجود نداشته باشد، آنقدر آلودگی ها در جریان انباشته می‌شوند که تمام جریان آلوده گردد. به این فرآیند تدریجی انباشته شدن توده‌های محلی آشفتگی بر روی هم، فرآیند گذر از حالت جریان آرام به آشفته گفته می‌شود. برای گذر از حالت جریان آرام به آشفته، مسافت و زمان مشخصی نیاز است تا تمام جریان از هسته‌های آشفتگی اشباع گردد.شکل 1-3  جریان آرام و تبدیل آن به جریانی آشفته در حین گذر از ناحیه گذرا[1]چنانچه میزان آشفتگی موجود در جریان آزاد  بالا برود و یا آنکه زبری سطح افزایش یابد، می‌توان انتظار داشت که گذر از حالت آرام به آشفته در مسافتی کوتاهتر و به عبارت دیگر سریعتر رخ دهد و بالعکس. میزان آشفتگی موجود در جریان آزاد را می توان به صورت نطفه‌های آشفتگی موجود در جریان آزاد درنظرگرفت که چنانچه این نطفه‌ها در فضای مساعد برای رشد و نمو قرار‌گیرند، می‌توانند باعث آشفته‌شدن جریان گردند. اینکه این نطفه ها چطور به وجود آمده‌اند و یا از کدام منبع سرچشمه گرفته‌اند، مهم نمی‌باشد. در برخی دیگر از مسائل مهندسی، اثراتی همچون اثر گریز از مرکز، اثر تغییرات چگالی، اثر جاذبه زمین و اثرات کاویتاسیون، ترکیدن حباب، واکنش‌های شیمیایی، اثرات اغتشاشی میدان‌های الکترومغناطیسی و غیره نیز می‌توانند باعث تسریع جریان در رسیدن به حالت آشفته گردند. [1]1-3 جدایی جریان                            دو اثر بسیار مهم در جریان سیالات شامل اثرات اینرسی و لزجت است. میزان تأثیر متقابل این دو اثر با تعریف عدد بدون بعد رینولدز ارزیابی می‌گردد. این عدد به صورت نسبت نیروهای اینرسی به نیروهای لزجت تعریف می‌شود:                                                                           (1-1)                                                    بزرگ بودن عدد رینولدز به معنی حاکم بودن اثرات اینرسی و کوچک بودن آن به معنای غالب بودن اثرات لزجت است. لازم به ذکر است که مفهوم عدد رینولدز در رابطه با مرزها که بر جریان اثر می‌گذارند، یک کمیت موضعی است. به عبارت دیگر انتخاب‌های مختلف طول مشخصه L در محاسبه عدد رینولدز، منجر به مقادیر مختلفی برای این پارامتر خواهد شد. بنابراین جریان بر روی یک جسم ممکن است که محدوده وسیعی از اعداد رینولدز را شامل شود که بستگی به محلی دارد که مطالعه بر روی آن انجام می‌شود. بنابراین در بحث جریانی که از روی یک جسم عبور می‌کند، معمولاً طول مشخصه L به گونه‌ای انتخاب می‌شود که نمایانگر یک بعد کلی از جسم باشد.اصولاً لزجت تمایل به متوقف کردن حرکت سیال دارد و در صورت نبود عاملی برای ادامه جریان، حرکت سیال به دلیل وجود لزجت به مرور کاهش پیدا کرده و نهایتاً متوقف می‌شود. عامل ادامه جریان در لایه مرزی گرادیان فشار است. گرادیان فشار منفی در جهت جریان عامل تقویت جریان است و باعث افزایش ممنتوم سیال می‌گردد، در این حالت ضخامت لایه مرزی تمایل به کاهش دارد اما اگر فشار در جهت جریان افزایش یابد (گرادیان فشار معکوس) ضخامت لایه مرزی به سرعت افزایش می‌یابد. در این حالت گرادیان فشار به شکل عاملی که با جریان مخالفت می‌کند عمل نموده و باعث کاهش ممنتوم سیال می‌گردد و به تدریج باعث متوقف شدن سیال روی مرز و حتی حرکت آن در خلاف جهت جریان می‌گردد. به این پدیده جدایی جریان می‌گویند. در نقطه جدایی جریان گرادیان سرعت برابر صفر بوده و خط جریان از مرز جدا می‌شود.1-4 روش‌های افزایش انتقال حرارتروش‌های افزایش انتقال حرارت تک فازی ممکن است به صورت کنش‌گر[2](فعال)، کنش‌پذیر[3](غیرفعال) و ترکیبی[4] دسته‌بندی شوند. روش‌های کنش‌گر به نیروی خارجی نیاز دارند، مانند میدان‌های الکترونیکی یا آکوستیک، تجهیزات مکانیکی یا ارتعاش سطح. در مقابل روش‌های کنش‌پذیر به نیروی خارجی نیاز ندارند و از یک هندسه سطح ویژه و یا سیال افزوده برای افزایش انتقال حرارت استفاده می‌کنند. روش‌هایی که هم زمان از بیشتر از یک روش برای افزایش انتقال حرارت استفاده می‌کنند، به عنوان روش‌های ترکیبی شناخته می‌شوند.دو دسته بندی دیگر از روش‌های افزایش انتقال حرارت نیز وجود دارند که عبارتند از: افزایش انتقال حرارت با استفاده از جریان اصلی و جریان ثانویه. در روش جریان اصلی، مشخصات اصلی جریان با تغییرات هندسی، تغییرات فشار و با روش‌های دیگر تغییر می‌کنند. در روش جریان ثانویه ساختارهای جریان محلی به طور تعمدی وارد می‌شوند. جریان اصلی می‌تواند به صورت‌های کنش‌گر یا کنش‌پذیر تغییر کند. پره‌های موج‎دار یا کانال‌های شیاردار نمونه‌هایی از تغییر جریان اصلی به صورت کنش‌پذیر و جریان ضربانی[5] نمونه‌ای از تغییر جریان اصلی به صورت کنش‌گر است. جریان ثانویه نیز می‌تواند به صورت کنش‌گر یا کنش‌پذیر باشد. استفاده از برآمدگی سطح یک نمونه از جریان ثانویه کنش‌پذیر و نیز استفاده از الکتروهیدرودینامیک برای تولید گردباد نمونه‌ای از جریان ثانویه کنش‌گر است. تولید گردابه برای افزایش انتقال حرارت یک نمونه از روش جریان ثانویه است. گردابه تولید شده می‌تواند به صورت‌های کنش‌گر یا کنش‌پذیر موجب افزایش انتقال حرارت شود.[2]1-5 گردابه[6]گردابه ها حالت خاصی از حرکت سیال هستند که ریشه در چرخش المان سیال دارند که در آنها جریان به دور یک مرکز می‌چرخد. سرعت چرخش جریان با دور شدن از مرکز گردابه کمتر می‌شود و در مرکز گردابه جریان دارای سرعت و نرخ چرخش بزرگتری است. در مرکز گردابه به دلیل سرعت بیشتر، فشار سیال کمترین مقدار خود را دارد و در حالت سه بعدی، هر گردابه دارای یک خط مرکزی است که ذرات سیال به دور آن می‌چرخند و چند گردابه موازی با جهت چرخش یکسان می‌توانند در هم ادغام شده و تشکیل گردابه‌های واحد نمایند. انرژی گردابه‌ها به دلیل اثرات لزجت تلف می‌گردد و پس از مدتی گردابه‌ها محو می‌گردند. این پدیده مهم نه تنها در جریان های برشی آرام و آشفته بلکه در جریان های ایده آل نیز دیده می‌شود و در تحلیل نیروها و فرآیندهای انتقال نقش اساسی دارد. به طور کلی دو نوع گردابه عرضی و طولی وجود دارد. محور گردابه عرضی عمود بر جهت جریان اصلی قرار می‌گیرد. مسیر گردابه کارمن پشت یک سیلندر نامحدود در جریان متقاطع  یک نمونه کلاسیک از سیستم گردابه عرضی است. گردابه های طولی دارای محورهایی موازی با جهت جریان اولیه هستند. جریان حول جهت جریان اصلی می‌پیچد و همیشه سه بعدی است. باله مثلثی با یک زاویه حمله می‌تواند نمونه کلاسیک تولید کننده گردابه طولی باشد.[3]1-6 ریزش گردابهگردابه‌ها از سطوح جلویی جریان جسم جریان‌بند شروع به تشکیل شدن می‌کنند و با رشد لایه‌های برشی، از جسم جدا شده و گردابه‌های بزرگی در جریان پایین دست تولید می‌کنند. قسمت داخلی لایه‌ برشی ایجاد شده روی جسم، با سرعت کمتری نسبت به لایه‌های خارجی که تحت تأثیر جریان آزاد قرار دارد، حرکت می‌کند. به همین علت لایه‌های برشی به شکل گردابه‌هایی درآمده و در جریان پخش می‌شوند. به این پدیده که شامل تولید گردابه‌ها و جدایش آنها از سطوح بالایی و پایینی اجسام و پخش آنها در جریان است ریزش گردابه[7] گویند. بررسی ناحیه گردابه‌ای پشت جسم برای اولین بار توسط استروهال[8] انجام گرفت. بر طبق تحقیقات وی، می‌توان پدیده ریزش گردابه را با عدد بدون بعدی به نام استروهال ارزیابی نمود:تعداد صفحه : 169قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09309714541 (فقط پیامک)        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید