پایان نامه : اصلاح الکترود خمیرکربن با نانو ذرات SiO2 و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم­کنش ساختار DNA­-i-motif با تاموکسیفن و اندازه­گیری الکتروشیمیایی آن

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته شیمی تجزیه

عنوان : اصلاح الکترود خمیرکربن با نانو ذرات SiO2  و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم­کنش ساختار DNA­-i-motif با تاموکسیفن و اندازه­گیری الکتروشیمیایی آن

دانشگاه مازندران

دانشکده شیمی

پایان نامه­ی دوره کارشناسی ارشد در رشته­ شیمی تجزیه

موضوع:

اصلاح الکترود خمیرکربن با نانو ذرات SiO2  و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم­کنش ساختار DNA­-i-motif با تاموکسیفن و اندازه­گیری الکتروشیمیایی آن

 

استاد راهنما:

دکتر جهانبخش رئوف

 

استاد مشاور:

دکتر رضا اوجانی

 

بهمن 1393

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود(در فایل دانلودی نام نویسنده موجود است)تکه هایی از متن پایان نامه به عنوان نمونه :(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)چکیده تلومرها کمپلکس­هایی متشکل از DNA و پروتئین می­باشند که نقش مهمی را در جهش­های ژنی و ایجاد سرطان دارند. آنزیم تلومراز، طول کروموزوم را از طریق سنتز تلومرها افزایش داده و در حدود 85% از سرطان­ها فعال است. در انتهای تلومرها یک دو رشته­ای DNA با توالی (5-TTAGGG):(5-CCCTAA) وجود دارد. رشته غنی از سیتوزین قادر است ساختار i-motif DNA را تشکیل دهد. مطالعات نشان داده است که با پایدار کردن این ساختار می­توان از تشکیل ساختار دو رشته­ای و در نتیجه طویل شدن طول تلومرها جلوگیری کرد. داروی تاموکسیفن یک عامل هورمونی ضد استروژن برای درمان سرطان سینه می­باشد که برای مدت زیادی به منظور درمان سرطان سینه به کار می­رود. در این تحقیق در مرحله اول امکان اندازه­گیری الکتروشیمیایی داروی تاموکسیفن سیترات در سطح الکترود خمیر کربن اصلاح شده با  نانو ذرات 2SiO به کمک ولتامتری پالس تفاضلی و ولتامتری چرخه­ای مورد مطالعه قرار گرفت و سنجش مقدار تاموکسیفن در نمونه حقیقی به کمک روش افزایش استاندارد صورت پذیرفت. در مرحله دوم، با طراحی زیست حسگرهایی بر مبنای ساختار i-motif، برهمکنش این ساختار با داروی ضد سرطان تاموکسیفن سیترات، مورد بررسی قرار گرفت. زیست­حسگر الکتروشیمیایی از طریق اصلاح الکترود خمیر کربن (CPE) با نانوذرات 2 SiOو –L سیستئین  سپس تثبیت ساختار i-motif DNA  بر روی سطح تهیه شد و برای بررسی برهم­کنش این ساختار با داروی تاموکسیفن به کار گرفته شد. پایداری ساختار i-motif ، یک استراتژی خوب برای درمان سرطان است، چون می­تواند از واکنش تلومراز در سلول سرطانی جلوگیری کند. برهم­کنش بینi-motif   DNAو دارو تاموکسیفن، در بافر فسفات M 1/0(PBS)  و محلول3[Fe (CN)6]-  از طریق ولتامتری چرخه­ای (CV) و روش ولتامتری موج مربعی (SWV) مورد مطالعه قرار گرفت. دماغه اکسایشی تاموکسیفن بعد از تثبیتDNA i-motif  روی سطح الکترود به دلیل برهم­کنشDNA i-motif  و تاموکسیفن مشاهده شد و با افزایش غلظت داروی تاموکسیفن، سیگنال افزایش می­یابد. از روش طیف­بینی دورنگ نمایی دورانی (CD) برای بدست آوردن اطلاعاتی در مورد نحوه شکل­گیری ساختار و برهم­کنش لیگاند با این ساختار مورد بررسی قرار گرفت و نتایج نشان داد که این ساختار در pH حدود 5/4 ساخته شده، ولی پایداری آن با افزایشpH  محیط کاهش می­یابد. حد تشخیص کاوشگر تثبیت شده بر سطح الکترود خمیر کربن اصلاح شده بر مبنای سه برابر انحراف استاندارد برابرm μ 06/0 تعیین ­شد. واژگان کلیدی: زیست حسگر الکتروشیمیایی DNA ، تاموکسیفن، سلول­های سرطانی، ساختار i-motif DNA  فهرست مطالبعنوان                                                                                                            صفحهفصل اول: مقدمهمقدمه.................................................................................................................................................................................. 2فصل دوم: تئوری                                                                                                                                    2-1- الکترودهای اصلاح شده شیمیایی............................................................................................................................ 112-2- حسگرها................................................................................................................................................................... 132-3- حسگرهای الکتروشیمیایی....................................................................................................................................... 132-4- زیست حسگرها........................................................................................................................................................ 152-5- زیست حسگرهای الکتروشیمیایی DNA.............................................................................................................. 162-6- ساختار مولکول DNA........................................................................................................................................... 182-6-1- DNA سه ­رشته­ای............................................................................................................................................ 232-6-2-  DNA چهار رشته­ای........................................................................................................................................ 242-6-2-الف- G-DNA.................................................................................................................................................. 242-6-2- ب- i-motif...................................................................................................................................................... 252-7- کاوشگرها و تثبیت آن­ها بر سطح مبدل................................................................................................................. 262-7-1- تثبیت DNA کاوشگر از طریق جذب سطحی................................................................................................. 262-7-1-1 جذب سطحی فیزیکی..................................................................................................................................... 272-7-1-2- جذب سطحی در پتانسیل کنترل شده......................................................................................................... 272-7-1-3-تثبیت DNA بوسیله اتصال کوالانسی.......................................................................................................... 272-8- انواع برهم­کنش میان نشانگرها و DNA............................................................................................................... 282-8-1- برهم­کنش الکترواستاتیک................................................................................................................................... 28عنوان                                                                                                                          صفحه2-8-2- برهم­کنش درون رشته­ای.................................................................................................................................. 282-8-3- برهم­کنش با شیار............................................................................................................................................. 282-9- تلومر...................................................................................................................................................................... 292-10-  آنزیم تلومراز...................................................................................................................................................... 29فصل سوم: بخش تجربی3-1-مواد شیمیایی مورد نیاز.......................................................................................................................................... 323-2-وسایل و تجهیزات................................................................................................................................................... 343-3- الکترودهای مورد استفاده....................................................................................................................................... 353-4-تهیه الکترودهای کار............................................................................................................................................... 353-4-1- تهیه­ی الکترود خمیر کربن برهنه (CPE)...................................................................................................... 353-4-2- تهیه الکترود خمیر کربن اصلاح شده با نانوذرات  2 SiO و –L سیستئین / L -Cys) 2NSiO)............... 363-5- بافرهای مورد استفاده برای تثبیت pH ............................................................................................................... 373-6- تهیه محلول­ها....................................................................................................................................................... 383-7- مشخصه­یابی سطح الکترود................................................................................................................................... 38فصل چهارم: اصلاح الکترود خمیر کربن با نانو ذرات 2 SiO و کاربرد آن برای تعیین الکتروشیمایی داروی تاموکسیفن سیترات4-1- مطالعه ولتامتری چرخه­ای الکترودهای کار......................................................................................................... 414-2- مطالعه اسپکتروسکوپی امپدانس الکتروشیمیایی................................................................................................ 424 -3- اثر pH محلول بافر به رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO ............................ 444-4- بررسی رفتار الکتروشیمیایی محلول تاموکسیفن سیترات در سطح الکترودهای خمیر کربن اصلاح شده با نانو ذراتعنوان                                                                                                                          صفحه2 SiO...................................................................................... .....................................................................................454-5- اثر سرعت روبش پتانسیل بر رفتار الکتروشیمیایی تاموکسیفن سیترات در سطح /CPE 2SiO ......................... 464-6- تعیین محدوده خطی غلظتی تاموکسیفن سیترات و حد تشخیص روش........................................................... 484-7- اندازه­گیری تاموکسیفن سیترات در نمونه­ حقیقی به کمک روش پیشنهادی..................................................... 50فصل پنجم: اصلاح الکترود خمیر کربن با نانو ذرات  /L-Cys 2 SiO و کاربرد آن به عنوان زیست حسگر الکتروشیمیایی در بررسی برهم­کنش ساختار DNA­-i-motif باتاموکسیفن5-1- کلیات................................................................................................................................................................. 535-2- اهمیت ساختار i-motif DNA............................................................................................................................ 535-3- ویژگی­های CPE/2NSiO / i-Motif DNA........................................................................................................... 565-3-2- مطالعه ولتامتری چرخه­ای چگونگی تثبیت DNA بر روی سطح الکترود اصلاح شده................................. 585-4 –مطالعه رفتار الکتروشیمیایی تاموکسیفن در سطح زیست حسگر الکتروشیمیایی.......................................... 595-4-1- ولتامتری چرخه­ای........................................................................................................................................ 595-4-2- ولتامتری موج مربعی.................................................................................................................................... 615-5 - اثر pH  بر رفتار الکتروشیمیایی تاموکسیفن در سطح................................................................................... 635-6- بررسی طیف سنجی CD.................................................................................................................................. 65   5-7- نتیجه­گیری....................................................................................................................................................... 67نتیجه­گیری نهایی..................................................................................................................................................... 68پیشنهادات برای کارهای آینده.................................................................................................................................... 69مراجع........................................................................................................................................................................... 70چکیده انگلیسیفهرست  شکل­هاعنوان                                                                                                                          صفحهشکل 2-1- ساختار یک حسگر الکتروشیمیایی نوعی................................................................................................ 15شکل 2-2- مراحل تشخیص DNA............................................................................................................................. 17شکل 2-3- شمایی از یک کروموزوم و زنجیر دورشته­ای DNA موجود در داخل کروموزوم و همچنین بازشده قسمتی از DNA با نشان دادن پیوند فسفودی استر بین دو قند پنتوز و همچنین پیوند هیدروژنی بین بازهای آلی در ساختار  دورشته‌ای) parsianshiraz.blogspot.com) DNA......... 21شکل2-4- ساختارهای متفاوت DNA ..................................................................................................................... 22شکل2-5- ساختار چهار رشته­ای G-quderplux........................................................................................................ 25شکل2-6- ساختار چهار رشته­ای  i-motif  DNA-.................................................................................................... 26شکل 3-1-الف) فرمول ساختاری و برخی از ویژگی­های تاموکسیفن سیترات و ب) ساختار L- سیستئین.............. 33شکل ۳-2- (الف) دستگاه پتانسیواستات / گالوانواستات اتولب و (ب) سل آزمایشگاهی.......................................... 35 شکل3- 3- نمایش نموداری از تهیه الکترود خمیر کربن اصلاح شده........................................................................ 37 شکل4-1- ولتاموگرام­های چرخه­ای محلول -4/-3[6(CN)[Fe  M 01/0 دارای NaCl  M 1/0 در سطح (a) CPE   و(b) /CPE 2SiO در سرعت روبش 1-s mV 50....................................................................................................................................................................... 41 شکل 4-2- نمودار نایکویست مربوط به الکترود خمیر کربن برهنه (a) و الکترود خمیر کربن اصلاح شده با نانو ذرات 2SiO (b) در محلول M  01/0 از زوج اکسنده/کاهنده ]6(CN)[Fe4K/]6(CN)[Fe3 Kحاوی NaCl M  1/0 با سرعت روبش 1-s mV 100   43شکل 4-3- اکسایش برگشت ناپذیر تاموکسیفن سیترات........................................................................................... 44شکل 4-4- نمودار شدت جریان دماغه اکسایش M 5-10 تاموکسیفن سیترات در سطح CPE/ 2SiO بر حسب pH محلول بافر فسفات M 1/0 ..................................................................................................................................................................................... 45عنوان                                                                                                                          صفحهشکل 4-5- ولتاموگرام­های چرخه­ای الکترود خمیر کربن برهنه (a) و خمیر کربن اصلاح شده با نانو ذرات 2SiO (b) در محلول بافر فسفاتM  1/0 با 5/4 pH= دارایM  1/0 NaCl در سرعت روبش پتانسیل 1-s mV 50. (c) نظیر (a) و (d) نظیر (b) در حضور M 5-10 از تاموکسیفن سیترات......................................................................................................................................................................... 46شکل 4-6- الف) ولتاموگرام­های چرخه­ای محلول  M  5-10 از تاموکسیفن سیترات در محلول بافر فسفات M 1/0 با  5/4PH=  دارای M 1/0   NaCl در سرعت­های روبش پتانسیل مختلف: a) 25 ،b ) 50،c ) 100،d ) 150،      e ) 200،f ) 300،g ) 400 میلی ولت بر ثانیه در سطح الکترود خمیر کربن اصلاح شده با نانو ذرات 2SiO .        ب) تغییرات بر حسب سرعت روبش پتانسیل (نتایج از ولتاموگرام­های چرخه­ای (الف) بدست آمده­اند)............................................................................................................................................................ 47 شکل 4-7- الف) ولتاموگرامهای پالس تفاضلی تاموکسیفن با غلظتهای مختلف (a) 8-10 ×3 ، (b) 8-10 ×7 ، (c) 7-10، (d) 7-10 ×3،  (e) 7-10 ×5، (d) 7-10 ×7، (f) mol L-1  6-10 درمحلول بافر فسفات 5/4PH= واجدM NaCl  1/0 در سطح /CPE 2NSiO 1-s mV 100 = .υ ب) نمودار تغییرات جریان دماغه آندی بر حسب غلظت تاموکسیفن................................ 49شکل4-8- نمودار شدت جریان دماغه اکسایش تاموکسیفن سیترات بر حسب غلظت تاموکسیفن.......................... 50شکل 5-1- تصویر نموداری از مراحل تهیه زیست حسگر الکتروشیمیایی i-motif DNA.......................................... 55شکل 5-2- تصاویر SEM سطح (الف) CPE برهنه پس از پیش­تیمار الکتروشیمیایی، (ب) CPE/Cys-2NSiO، (ج) CPE/2NSiO/ i-Motif DNAو (د) CPE/Cys-2NSiO/i-Motif DNA............................................................................................................................... 57شکل5-3- ولتاموگرام­های چرخه­ای محلول-4/-3 [6(CN)[Fe  M 01/0 دارای M NaCl 1/0 در بافر فسفات  M1/0 با 5/4 pH= در سطح (a)  CPE (b)  CPE/2NSiO، (c)  CPE/ 2 NSiO/ i-Motif   DNA و (d)  CPE/ Cys- 2 NSiO/i-Motif DNA  در سرعت روبش 1-s mV 50           59شکل5-4- ولتاموگرام چرخه­ای M 5-10 داروی تاموکسیفن در محلولM  1/0 بافر فسفات با 5/4 pH= دارای M 1/0 NaCl در سطحCPE (a) ، (b) CPE/ Cys- 2 NSiO، (c) CPE/Cys-2 NSiO/i-Motif DNA در سرعت روبش پتانسیل 1-s mV 50   60عنوان                                                                                                                       صفحهشکل5-5- ولتاموگرام موج مربعی CPE/Cys- 2 NSiO/i-motif DNA، در حضور غظت­های فزاینده­ایی از تاموکسیفن:(a) 8-10×7، (b) 7-10، (c) 7-10×5، (d) 7-10×7،  (e)  6-10، (f)  6-10 ×5، (g) 6-10 × 7، (h) M  5-10،  در محلول بافر فسفات 5/4 pH= دارای M 1/0 NaCl . الف) ضمیمه ولتاموگرام­های موج مربعی:(c , NSiO2-Cys/CPE (b ,CPE (a CPE/Cys-2 NSiO/i-motif DNA در غیاب تاموکسیفن. ب) نمودار تغییرات شدت جریان اکسایش تاموکسیفن بر حسب تغییرات غلظت آن.......................................................... ..............................................................................62شکل5-6-الف) ولتاموگرام موج مربعی محلول تاموکسیفن با غلظت (a)M  4-10 و (b)  M5-10 در بافر فسفات 5/4 pH= در سطح CPE/Cys- 2 NSiO/i-motif DNA، (c) نظیر (a) و (d) نظیر (b) در بافر فسفات M1/0 با0/7 pH=........................................................................................................................................................... 63 شکل 5-6- ب) ولتاموگرام موج مربعی محلول تاموکسیفن با غلظت (a)M  4-10 و (b)  M5-10 در محلول بافر فسفات M 1/0 با 5/4 pH= در سطح CPE/Cys- 2 NSiO/dsDNA، (c) نظیر (a) و (d) نظیر (b) در محلول بافر فسفات M 1/0 با0/7 pH=  .......... 64 شکل 5-7) طیف بینی  CD محلول بافر فسفات  M1/0 با a) 5/4 pH= و b) 0/7 pH= دارای µM i-motif DNA0/1...66فهرست جدول­هاعنوان                                                                                                                            صفحهجدول3-1- موادشیمیایی مورد استفاده در این کار تحقیقاتی........................................................................................ 32جدول4-1- نتایج حاصل از روش پیشنهادی در تعیین غلظت تاموکسیفن در نمونه پلاسما3 n=.............................. 51 
 معادل فارسیمعادل انگلیسیعلائم و اختصارات 
 ولتVoltV 
 الکترود نقره/نقره کلرید/پتاسیم کلرید(M3)Silver/silverChloride/Potassium Chloride(3M)Ag/AgCl/KCl(3M) 
 ثانیهSecondS 
 مولارMolarM 
 پتانسیلPotentialE 
 میکروآمپرMicroamperµA 
 غلظتConcentrationC 
 میلی ولت بر ثانیهMilivolt per secondmV s-1 
 سرعت روبش پتانسیلPotential sweep rateΥ 
 ولتامتری چرخه ایCyclic voltammetryCV 
 الکترود خمیر کربنCarbon paste electrodeCPE 
 پتانسیل دماغه­ی آندیAnodic peak potentialEpa 
 پتانسیل دماغه­ی کاتدیCathodic peak potentialEpc 
 میکروسکوپی الکترون روبشیScanning electron microscopySEM 
میلی مولارMilimolarmM
میکروآمپرMicroamperµA
میکروگرمMicrogramμg
نانومترNanometerNm
حد تشخیصLimit of detectionLOD
انحراف استاندارد نسبیRelative standard deviationRSD
آمپرAmpereA
مقدمهتشخیصDNA ، یکی از حوزه­های مهم بیولوژی مولکولی و مطالعات زیست فناوری است. تشخیص توالی بازهای خاص در نوکلئیک اسیدهای انسانی، ویروسی و باکتریایی از اهمیت بسزایی در حوزه­های متعدد برخوردار است که دارای کاربرد در تشخیص: عوامل بیماری، ارگانیسم­های آلوده کننده غذایی، تحقیقات زیست محیطی و علوم جنایی می­باشد. از زمانیکه پالیکیک[1]، فعالیت الکتروشیمیایی نوکلئیک اسیدها را کشف کرد [1]، زیست حسگرها امیدهای تازه­ای برای ایجاد روشهای سریع، ارزان و ساده برای تشخیص نوکلئیک اسیدها فراهم ساخته­اند [2]. تشخیص یا آشکارسازی الکتروشیمیایی گونه­های زیستی براساس واکنش­های الکتروشیمیایی است که در طول فرآیندهای تشخیص زیستی اتفاق می­افتد [3] .به علت اینکه واکنش­های الکتروشیمیایی مستقیماً یک علامت الکترونیکی ایجاد می­کنند، نیازی به دستگاه­های گرانقیمت تبدیل علامت وجود ندارد. علاوه­ بر این، به علت اینکه کاوشگر[2] می­تواند براحتی بر روی الکترودها تثبیت شود، تشخیص آن می­تواند توسط آنالیز الکتروشیمیایی ارزانقیمت انجام شود. همچنین سیستم­های قابل حمل برای آزمایشات کلینیکی و تحقیقات زیست­ محیطی توسعه یافته است [4]. ابزارهای الکتروشیمیایی، بسیار حساس، ساده و سریع بوده و براحتی به کار برده می­شوند و با فناوری­های نانو سازگاری دارند. بنابراین به نظر می­رسد، نامزدهای خوبی برای تشخیص سریع و ارزانقیمت بیماری­های ژنی و تشخیص گونه­های بیولوژیکی پاتوژنی می­باشند.یکی از بزرگترین چالش‌ها در قلمرو الکتروشیمی تجزیه­ای، طراحی و ساخت الکترودهایی می‌باشد که در حالت ایده‌آل بتوانند به یک گونه‌ی شیمیایی خاص به صورت کاملاً گزینش‌پذیر و با حساسیت بالا پاسخ دهند. زیست ­حسگرهای[3] الکتروشیمیایی، دسته وسیعی از الکترودهای اصلاح شده می­باشند که امروزه بسیار مورد توجه محققین قرار گرفته­اند [5]. زیست حسگر، ابزاری است که از یک لایه فعال بیولوژیکی به عنوان جزء شناساگر استفاده می­کند تا عوامل فیزیکی برهم­کنش بیولوژیکی را به علامت قابل اندازه­گیری تجزیه­ای تبدیل کند [6]. دو عامل در طراحی یک زیست حسگر مناسب نقش ایفا می­کنند: الف) روش مناسب تثبیت پذیرنده زیستی در سطح مبدل که موجب افزایش طول عمر، حساسیت و پایداری آن می­گردد. ب) انتخاب مبدل مناسب. انواع متداول مبدل­های مورد استفاده در زیست حسگرها، شامل مبدل­های: الکتروشیمیایی  [8 ،7] [3]، نوری (نورتابی[4]، جذب و رزونانس پلاسمون سطح[5] ) [9]، حساس به تغییر جرم [10] و حرارت می باشند [11]. زیست حسگرها خصوصیات و مزایای خوبی، نظیر: آسانی استفاده، سرعت تشخیص مناسب، حساسیت بالا و هزینه کمتر نسبت به روش­های طیف سنجی وکروماتوگرافی مایع با عملکرد بالا را دارا می­باشند که قادرند گونه آزمایشی مورد نظر را در غلظت­های بسیار کم در نمونه‌های بیولوژیکی اندازه­گیری کنند [14-12]. در حقیقت زیست حسگرها، می­توانند با بهره­گیری از هوشمندی مواد بیولوژیک، ترکیب یا ترکیباتی را شناسایی نمایند که با آنها واکنش داده و بدین ترتیب یک پیام شیمیایی، نوری و یا الکتریکی تولید کنند. اساس کار یک زیست حسگر تبدیل پاسخ بیولوژیکی به یک پیام قابل اندازه­گیری است [15]. بطور کلی هر زیست حسگر شامل، اجزای: گونه آزمایشی مورد نظر، لایه زیستی، مبدل، پردازشگر و نمایشگر است. انواع پذیرنده­های زیستی که در زیست حسگرها مورد استفاده قرار می­گیرند، شامل: آنزیم، آنتی بادی، گیرنده­های سلولی، اسیدهای نوکلئیک DNA[6] یا RNA[7]، میکروارگانیسم یا سلول کامل، بافت و غیره هستند [16].یک زیست حسگر DNA، وسیله­ای است که عامل تشخیص بیولوژیکی آن، کاوشگر DNA است. کاوشگرهای DNA، الیگونوکلئوتیدهای کوتاه تک رشته­ای (ss-DNA) هستند که معمولاً کاوشگر نامیده می­شوند. دئوکسی ریبونوکلئیک اسید (DNA)، یک مولکول رمزگذار دستورالعمل­های ژنتیکی است که در تمام موجودات زنده، شناخته شده می­باشد. درشت مولکول[8]DNA ، یک ساختار مارپیچی شبیه نردبان دارد که گروه­های فسفات و قند به طور یک در میان، نرده­های نردبان و باز­های آدنین، گوانین، سیتوزین و تیمین پله­های آن را تشکیل می­دهند که این بازها، دو به دو با یکدیگر توانایی تشکیل پیوند هیدروژنی قوی را دارند. DNA به خاطر حضورگروه­های فسفات در ساختار آن، دارای بار منفی می­باشد و از این رو خاصیت پلی آنیونی را دارد، به طوری که بازهای آلی به سمت داخل و گروه فسفات به سمت بیرون یا در سطح خارجی درشت مولکول  DNAقرار می­گیرند. در DNA، هر رشته از نوکلئوبازها تنها با یک نوع رشته دیگر از نوکلئوبازها جفت می­شوند که به آن جفت شدن بازهای مکمل می­گویند. در ساختار دو رشته­ایDNA ، باز آدنین در مقابل تیمین با دو پیوند هیدروژنی و گوانین در مقابل سیتوزین با سه پیوند هیدروژنی قرار دارد. پس یک توالی خاص از DNA قادر است تنها به توالی مکمل خود پیوند شود [17]. در سال­های اخیر، تلاش­های زیادی برای طراحی زیست حسگرهای الکتروشیمیایی با صحت[9]، حساسیت[10] و انتخاب پذیری[11] تقویت شده، انجام شده است [18]. نانوذرات[12] می­توانند در این زمینه بسیار مفید باشند و در طراحی زیست حسگرهای الکتروشیمیایی که نسبت به سایر زیست حسگرها کارائی بالاتری دارند، به طور عمده ای استفاده ­شوند [19].نانوذرات به عنوان یکی از مهمترین ساختارها در حوزه فناوری نانو، با توجه به اندازه کوچک آنها، خواص فیزیکی، شیمیایی و الکترونیکی منحصر به فردی را نشان می­دهند که در تهیه زیست حسگرها، بسیار مورد توجه می­باشند [20]. ویژگی­های یک ماده می­تواند به طور معنی داری با اندازه ذرات آن تغییر کند. بسیاری از خواص ماده، از جمله: ویژگی­های ساختاری، گرمایی، شیمیایی، مکانیکی، مغناطیسی و نوری در اثر کاهش اندازه ذره تغییر می­کند. در نتیجه، با استفاده از این مواد در ساخت نانوزیست حسگرها، می­توان خواص جدید و مختلفی ایجاد نمود که از آنها، بتوان برای مطالعه بهتر سیستم­های متفاوت استفاده کرد. از میان نانوزیست حسگرها، نانوزیست حسگرهای الکتروشیمیایی رشد خوبی داشته­ است ]21 [.نانوزیست فناوری DNA،  فناوری بالقوه­ای است که از تلفیق زیست فناوری و فناوری نانو بوجود آمده است. نانوزیست فناوری DNA، از ساختار و خواص مولکول DNA جهت استفاده در زمینه زیستی، مهندسی و پزشکی بهره می­برد. هدف اساسی نانوزیست فناوری DNA، ساخت مواد با ساختار تکرار شونده، وسایل و ماشین­هایی در ابعاد نانو، توسعه­ی این ساختارها به سطوح بزرگتر (ماکروسکوپی) با استفاده از خواص ساختاری و عملکردی و برهم­کنش­های بین مولکولی DNA است. در این زمینه، یکی از مواردی که بسیار مورد توجه محققین قرار گرفته است، مطالعه و بررسی در مورد ساختار DNA و چگونگی عملکرد آن در شرایط محیطی متفاوت و برهم­کنش­های آن با ترکیبات مختلف بوده است [22]. همانطور که می­دانیم مولکول DNA یک ماده ژنتیکی است که حامل اطلاعات ژنتیکی در تمام موجودات زنده می­باشد. مولکول DNA، دارای توالی خاصی ناشی از چگونگی آرایش بازهای تشکیل­دهنده­ی آن می­باشد که این توالی سبب ایجاد خواص خاصی در هر رشته DNA می­گردد. توالی DNA جهت پردازش اطلاعات مفید بوده و سبب می­گردد که ساختار آن به صورت پایا و محکم درآید. علاوه بر این، DNA دارای خواص منحصر به فردی مانند دارا بودن ساختار هندسی در ابعاد نانو[13]، ذخیره و کد کردن اطلاعات[14]، خودتکثیری[15]، خودتشخیصی ساختار[16] و خودآرایی[17] است [23]. امروزه، محققین تعداد زیادی از نانوزیست حسگر DNA ساخته­اند که از آنها در جهت مطالعه برهم­کنش DNA با سایر ترکیبات از جمله: داروها، پروتئین­ها و ترکیبات شیمیایی مختلفی استفاده شده است ]25،24[.همچنین نانو مواد[18] ، انتقال الکترون بین زیست مولکول­های تثبیت شده و سطح الکترود را آسان می­کنند. نانوذرات برای تثبیت مولکول­های زیستی­، کاتالیز واکنش­های الکتروشیمیایی، افزایش سرعت انتقال الکترون بین سطح الکترود و پروتئین، نشان دار کردن مولکول­های زیستی و حتی به عنوان واکنشگر عمل می­کنند [26]. با توجه به بزرگی سطح مؤثر و بالا بودن سطح انرژی، نانوذرات بیومولکول­ها را بشدت جذب کرده و برای تثبیت مولکول­های زیستی در ساخت زیست حسگر بکار می­روند [28 ،27]. انواع زیادی از نانوذرات، مانند: نانوذرات اکسیدی (مثلاً 2SiO) برای ساخت حسگرهای الکتروشیمیایی و زیست حسگرها به کار گرفته شده­اند [29]. این نانوذرات برای تثبیت مولکول­های زیستی به دلیل سازگاری خوب و آماده سازی آسان، استفاده شده­اند [31 ،30].DNA تلومری انسان، از تکرارهای پشت سرهم بازهای تیمین، آدنین، گوانین و سیتوزین، CCCTAA)/(TTAGGG تشکیل شده است [32]. تلومرها دارای ساختار خاصی هستند که موجب استحکام و پایداری مولکول خطی DNA می­شوند و انتهای کرموزوم را از تجزیه شدن، نوآرایی و الحاق انتهایی حفظ می­کنند. در هر تقسیم سلولی به شکل پیوسته، بخشی از طول تلومر کوتاه می­شود. کوتاه شدن پیوسته تلومر به جدا شدن یک سری از پروتئین­ها از ساختار تلومر و تغییر بیان ژن منجر می­شود. کوتاه شدن مداوم تلومر به توقف چرخه سلولی و مرگ سلولی می­انجامد [35-33]. تلومراز آنزیمی است که بدون نیاز به الگو، موجب سنتز تلومر می­شود. این سلول­ها به کمک آنزیم تلومراز، کوتاه شدن تلومر را که در پی تقسیم­های متوالی روی می­دهد، جبران می­کنند [36]. با این حال، آنزیم تلومراز، در حدود 90 درصد از سلول­های سرطانی، سطح بالایی از فعالیت را دارد و همین فعالیت بالا منجر به ایجاد سرطان می­گردد    [38 ،37]. چنانچه اتصال تلومرازها به نواحی تلومری توسط برهم­کنش مولکول­های کوچک با نواحی تلومری مهار شود، به شکل مستقیم فعالیت تلومراز کاهش می­یابد.از طرف دیگر، در رشته­های DNAی غنی از باز سیتوزین C، ساختارهایی می تواند شکل بگیرد که در آن، هر C از طریق پیوند هیدروژنی با سه C دیگر در ارتباط باشد، به شرط آنکه Cی مقابل آن به صورت همی پروتونه باشد، یعنی جفت باز C-C+ شکل بگیرد، به چنین ساختاری، ساختار i-motif می­گویند و در شرایطی تشکیل می­شود که رشته DNA غنی از باز سیتوزین باشد [40 ،39]. ترکیباتی که با توالی­های ذکر شده بر همکنش بدهند، قادر به مهارکردن فعالیت تلومراز می­باشند. پایداری ساختارi-motif  به تکرار توالی دارای سیتوزین، pH اسیدی ملایم، ماهیت و غلظت کاتیون­های موجود در محلول بستگی دارد. پایداری ساختار i-motif پیچ خورده در pH اسیدی ملایم، یک استراتژی خوب برای درمان سرطان است، چون می­ تواند از واکنش تلومراز در سلول سرطانی جلوگیری می­کند [41].تاموکسیفن‌ یک‌ داروی‌ ضد سرطان‌ است‌ که‌ برای‌ درمان‌ سرطان‌ پستان‌ تجویز می‌شود. در مواردی‌ که‌ سرطان‌ به‌ سایر نقاط‌ بدن‌ پخش‌ شده‌ باشد، نیز استفاده‌ می‌شود. این‌ دارو به‌ ویژه‌ بر روی‌ سرطان­هایی‌ که‌ با استرژون‌ تحریک‌ می‌شوند، مؤثر می‌باشد. استروژن رشد سلول‌های سرطانی پستان را بالا می‌برد. بعضی از سرطان‌های پستان را در دسته گیرنده مثبت استروژن (حساس به هورمون) طبقه­بندی می‌کنند، بدین معنا که سلول‌های سرطانی پروتئینی دارند که استروژن به آن وابسته است. رشد این سلول‌های سرطانی به استروژن وابسته است. از آنجا که تاموکسیفن برخلاف تأثیر استروژن بر این سلول‌ها عمل می‌کند، گاهی به آن ضد استروژن نیز می­گویند. تاموکسیفن فقط در درمان گیرنده مثبت استروژن سرطان پستان مؤثر است. بنابراین، باید پیش از تصمیم‌گیری در مورد گزینه‌های درمانی، وضعیت گیرنده‌های هورمون تومور را جهت درمان سرطان پستان تعیین کرد. تاموکسیفن سیترات (غیر استروئیدی ضد استروژن) مهم­ترین عامل هورمونی در درمان سرطان سینه برای بیش از دو دهه شناخته شده که می­تواند حدود 50 درصد زنانی که در خطر ابتلا به سرطان سینه هستند را درمان کند. این دارو با اتصال به گیرنده­های سیتوپلاسمی (گیرنده­ های استروژن)، تقسیم سلولی را مهار کرده و در فعالیت استروژن، که هورمونی زنانه است، مداخله می­کند. استروژن احتمال پیشرفت سرطان را در پستان بالا می­برد. تاموکسیفن سیترات دارویی است که به صورت قرص خوراکی عرضه می­شود [44-42].در این کار، سعی می­شود با طراحی زیست حسگرهایی بر مبنای ساختار i-motif، برهم­کنش این ساختار با داروی ضد سرطان تاموکسیفن سیترات[19]، مورد بررسی قرار گیرد. به دلیل اهمیت داروی تاموکسیفن سیترات در درمان سرطان سینه، چندین روش برای اندازه­گیری این دارو ارائه شده که شامل الکتروفورز موئینه، کروماتوگرافی مایع با عملکرد بالا و طیف سنجی می­باشد [45]، اما روش­های ذکر شده، پیچیده و پر هزینه­اند. روشهای الکتروشیمیایی نسبت به روش­های­ دیگر، به دلیل: سادگی، حساسیت مطلوب، قابلیت انطباق با فناوری­های جدید، امکان کوچک­سازی سیستم و هزینه پایین، بسیار مورد توجه قرار گرفته­اند [46].با استفاده از طیف ­بینی دورنگ ­نمایی دورانی (CD)[20]، می­توان اطلاعاتی را در مورد ساختار تشکیل شده و حالت قرار گرفتن رشته­های DNA برای تشکیل ساختار i-motif بدست­ آورد. ویژگی ممتاز i-motif با طیف بینی دو رنگ نمایی دورانی تعیین می­شود. معمولا" در طیف CD برای ساختار  i-motif یک دماغه مثبت نزدیک 280 نانومتر و یک دماغه منفی در 260 نانومتر مشاهده می­شود [47].یک الکترود کار[21] مناسب، نقش عمده­ای در توسعه­ی زیست حسگر الکتروشیمیایی دارد. از میان الکترودهای کار مختلف، الکترودهای خمیر کربن (CPE)[22] معمول­ترند زیرا خمیر کربن به راحتی و با هزینه کم تهیه می­ شود و برای تهیه الکترودهای اصلاح شده با ترکیبات دیگر نیز بسیار مناسب هستند [48].ازاینرو، در بخش اول این کار، یک زیست حسگر الکتروشیمیایی DNA با استفاده از الکترود خمیر کربن برهنه و خمیر کربن اصلاح شده با نانوذرات 2SiO  تهیه شد. نانوذرات 2SiO  می­تواند سبب افزایش رسانایی سطح الکترود خمیرکربن شده و موجب بهبود علامت تجزیه­ای الکترود اصلاح شده گردد. نانوذرات 2SiO،  سبب افزایش حساسیت زیست حسگر DNA شده و دستیابی به حد تشخیص­های پایین­تر نسبت به الکترود خمیر کربن برهنه را فراهم خواهد کرد. به دلیل اهمیت ساختار  i-motif -DNA­در سلول­های بدن انسان و اهمیت زیاد این ساختار در بلوکه کردن انتهای تلومرها و مهار آنزیم تلومراز و همچنین بیماری­های ناشی از سرطانی شدن سلول­ها، مطالعه این نوع ساختارهای DNA و پایدار کردن آنها در اثر ایجاد پیوند با داروی تاموکسیفن به عنوان لیگاند مورد توجه قرار می­گیرد. برای بررسی رفتار تاموکسیفن سیترات در پایدار کردن این ساختار، از فنون مختلف الکتروشیمیایی، نظیر: ولتامتری پالس تفاضلی، ولتامتری چرخه­ای استفاده شده و رفتار الکتروشیمیایی زیست حسگر تهیه شده قبل و بعد از مرحله تثبیت و برهمکنش با داروی مورد نظر بررسی می­گردد. همچنین از روش طیف­ بینی دورنگ نمایی دورانی یا CD برای بدست آوردن اطلاعاتی در مورد نحوه برهمکنش این دارو با ساختار  i-motif-DNA و نحوه شکل­گیری ساختار مورد نظر استفاده می­گردد. همچنین امکان اندازه­گیری الکتروشیمیایی داروی تاموکسیفن سیترات در سطح الکترود خمیر کربن اصلاح نشده و اصلاح شده با ذرات 2SiO به کمک ولتامتری پالس تفاضلی و ولتامتری چرخه­ای مورد مطالعه قرار می­گیرد.  تعداد صفحه : 97قیمت : 14000تومان

بلافاصله پس از پرداخت ، لینک دانلود پایان نامه به شما نشان داده می شود

و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09309714541 (فقط پیامک)        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید