پایان نامه کارشناسی ارشد مکاترونیک :(Simultaneously Localization And Mapping (SLAM

متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی مکاترونیک

با عنوان:(Simultaneously Localization And Mapping (SLAM

در ادامه مطلب می توانید صفحات ابتدایی این پایان نامه را بخوانید

و در صورت نیاز به متن کامل آن می توانید از لینک پرداخت و دانلود آنی برای خرید این پایان نامه اقدام نمائید.

دانشگاه آزاد اسلامی واحد تهران جنوب دانشکده تحصیلات تکمیلی “M.Sc” پایان نامه برای دریافت درجه کارشناسی ارشد مهندسی مکاترونیک عنوان : (Simultaneously Localization And Mapping (SLAM

برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی شود

تکه هایی از متن به عنوان نمونه :(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)چکیده:

The research reported in this seminar focuses on a solution so called Simultaneous Localization and Mapping (SLAM). The Simultaneous Localisation and Mapping (SLAM) problem asks if it is possible for a mobile robot to be placed at an unknown location in an unknown environment and for the robot to incrementally build a consistent map of this environment while simultaneously determining its location within this map. A solution to the SLAM problem has been seen as a `holy grail' for the mobile robotics community as it would provide the means to make a robot truly autonomous. The `solution' of the SLAM problem has been one of the notable successes of the robotics community over the past decade. SLAM has been formulated and solved as a theoretical problem in a number of different forms. SLAM has also been implemented in a number of different domains from indoor robots, to outdoor, underwater and airborne systems. At a theoretical and conceptual level, SLAM can now be considered a solved problem. However, substantial issues remain in practically realizing more general SLAM solutions and notably in building and using perceptually rich maps as part of a SLAM algorithm

مقدمه:

Efficient mobile robot navigation is limited mainly by the ability of a robot to perceive and interact with its surroundings in a deliberative way. A desirable characteristic a mobile robot must have are the skills needed to recognize the landmarks and objects that surround it, and to be able to localize itself relative to its workspace. This knowledge is crucial for the successful completion of intelligent navigation tasks. But, for such interaction to take place, a model or description of the environment needs to be specified beforehand. If a global description or measurement of the elements present in the environment is available, the problem consists on the interpretation and matching of sensor readings to such previously stored object models. Moreover, if we know that the recognized objects are fixed and persist in the scene, they can be regarded as landmarks, and can be used as reference points for self localization. If on the other hand, a global description or measurement of the elements in the environment is not available, at least the descriptors and methods that will be used for the autonomous building of one are required. This is, either the robot has a global map, or it is given the means to learn one. We are interested in this second case. That is, in providing an autonomous robot with the necessary skills to build a map and precisely localize itself within this map while navigating in previously unexplored settings. The Simultaneous Localisation 3 and Mapping (SLAM) problem asks if it is possible for a mobile robot to be placed at an unknown location in an unknown environment and for the robot to incrementally build a consistent map of this environment while simultaneously determining its location within this map. The `solution' of the SLAM problem has been one of the notable successes of the robotics community over the past decade. SLAM has been formulated and solved as a theoretical problem in a number of different forms. SLAM has also been implemented in a number of different domains from indoor robots, to outdoor, underwater and airborne systems. At a theoretical and conceptual level, SLAM can now be considered a solved problem. However, substantial issues remain in practically realizing more general SLAM solutions and notably in building and using perceptually rich maps as part of a SLAM algorithm

تعداد صفحه : 63قیمت : شش هزار تومان
بلافاصله پس از پرداخت ، لینک دانلود به شما نشان داده می شود

و به ایمیل شما ارسال می شود.

پشتیبانی سایت :        09124404335        info@arshadha.ir

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  -- --

مطالب مشابه را هم ببینید

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه های دانشگاهی است. مطالب مشابه را هم ببینید. برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید

2 پاسخ

ارسال یک پاسخ

می خواهید در گفتگو ها شرکت کنید؟
Feel free to contribute!

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

* Copy This Password *

* Type Or Paste Password Here *